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Abstract
We examine a class of embeddings based on structured random matrices with
orthogonal rows which can be applied in many machine learning applications
including dimensionality reduction and kernel approximation. For both the Johnson-
Lindenstrauss transform and the angular kernel, we show that we can select matrices
yielding guaranteed improved performance in accuracy and/or speed compared to
earlier methods. We introduce matrices with complex entries which give significant
further accuracy improvement. We provide geometric and Markov chain-based
perspectives to help understand the benefits, and empirical results which suggest
that the approach is helpful in a wider range of applications.

1 Introduction

Embedding methods play a central role in many machine learning applications by projecting feature
vectors into a new space (often nonlinearly), allowing the original task to be solved more efficiently.
The new space might have more or fewer dimensions depending on the goal. Applications include
the Johnson-Lindenstrauss Transform for dimensionality reduction (JLT, Johnson and Lindenstrauss,
1984) and kernel methods with random feature maps (Rahimi and Recht, 2007). The embedding can
be costly hence many fast methods have been developed, see §1.1 for background and related work.

We present a general class of random embeddings based on particular structured random matrices
with orthogonal rows, which we call random ortho-matrices (ROMs); see §2. We show that ROMs
may be used for the applications above, in each case demonstrating improvements over previous
methods in statistical accuracy (measured by mean squared error, MSE), in computational efficiency
(while providing similar accuracy), or both. We highlight the following contributions:

• In §3: The Orthogonal Johnson-Lindenstrauss Transform (OJLT) for dimensionality reduction.
We prove this has strictly smaller MSE than the previous unstructured JLT mechanisms. Further,
OJLT is as fast as the fastest previous JLT variants (which are structured).

• In §4: Estimators for the angular kernel (Sidorov et al., 2014) which guarantee better MSE. The
angular kernel is important for many applications, including natural language processing (Sidorov
et al., 2014), image analysis (Jégou et al., 2011), speaker representations (Schmidt et al., 2014)
and tf-idf data sets (Sundaram et al., 2013).

• In §5: Two perspectives on the effectiveness of ROMs to help build intuitive understanding.

In §6 we provide empirical results which support our analysis, and show that ROMs are effective for
a still broader set of applications. Full details and proofs of all results are in the Appendix.
∗equal contribution
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1.1 Background and related work

Our ROMs can have two forms (see §2 for details): (i) a Gort is a random Gaussian matrix con-
ditioned on rows being orthogonal; or (ii) an SD-product matrix is formed by multiplying some
number k of SD blocks, each of which is highly structured, typically leading to fast computation
of products. Here S is a particular structured matrix, and D is a random diagonal matrix; see §2
for full details. Our SD block generalizes an HD block, where H is a Hadamard matrix, which
received previous attention. Earlier approaches to embeddings have explored using various structured
matrices, including particular versions of one or other of our two forms, though in different contexts.

For dimensionality reduction, Ailon and Chazelle (2006) used a single HD block as a way to spread
out the mass of a vector over all dimensions before applying a sparse Gaussian matrix. Choromanski
and Sindhwani (2016) also used just one HD block as part of a larger structure. Bojarski et al. (2017)
discussed using k = 3 HD blocks for locality-sensitive hashing methods but gave no concrete results
for their application to dimensionality reduction or kernel approximation. All these works, and other
earlier approaches (Hinrichs and Vybíral, 2011; Vybíral, 2011; Zhang and Cheng, 2013; Le et al.,
2013; Choromanska et al., 2016), provided computational benefits by using structured matrices with
less randomness than unstructured iid Gaussian matrices, but none demonstrated accuracy gains.

Yu et al. (2016) were the first to show that Gort-type matrices can yield improved accuracy, but their
theoretical result applies only asymptotically for many dimensions, only for the Gaussian kernel and
for just one specific orthogonal transformation, which is one instance of the larger class we consider.
Their theoretical result does not yield computational benefits. Yu et al. (2016) did explore using a
number k of HD blocks empirically, observing good computational and statistical performance for
k = 3, but without any theoretical accuracy guarantees. It was left as an open question why matrices
formed by a small number of HD blocks can outperform non-discrete transforms.

In contrast, we are able to prove that ROMs yield improved MSE in several settings and for many of
them for any number of dimensions. In addition, SD-product matrices can deliver computational
speed benefits. We provide initial analysis to understand why k = 3 can outperform the state-of-
the-art, why odd k yields better results than even k, and why higher values of k deliver decreasing
additional benefits (see §3 and §5).

2 The family of Random Ortho-Matrices (ROMs)

Random ortho-matrices (ROMs) are taken from two main classes of distributions defined below that
require the rows of sampled matrices to be orthogonal. A central theme of the paper is that this
orthogonal structure can yield improved statistical performance. We shall use bold uppercase (e.g.
M) to denote matrices and bold lowercase (e.g. x) for vectors.

Gaussian orthogonal matrices. Let G be a random matrix taking values in Rm×n with iid N (0, 1)
elements, which we refer to as an unstructured Gaussian matrix. The first ROM distribution we
consider yields the random matrix Gort, which is defined as a random Rn×n matrix given by first
taking the rows of the matrix to be a uniformly random orthonormal basis, and then independently
scaling each row, so that the rows marginally have multivariate Gaussian N (0, I) distributions. The
random variable Gort can then be extended to non-square matrices by either stacking independent
copies of the Rn×n random matrices, and deleting superfluous rows if necessary. The orthogonality
of the rows of this matrix has been observed to yield improved statistical properties for randomized
algorithms built from the matrix in a variety of applications.

SD-product matrices. Our second class of distributions is motivated by the desire to obtain similar
statistical benefits of orthogonality to Gort, whilst gaining computational efficiency by employing
more structured matrices. We call this second class SD-product matrices. These take the more
structured form

∏k
i=1 SDi, where S = {si,j} ∈ Rn×n has orthogonal rows, |si,j | = 1√

n
∀i, j ∈

{1, . . . , n}; and the (Di)
k
i=1 are independent diagonal matrices described below. By

∏k
i=1 SDi, we

mean the matrix product (SDk) . . . (SD1). This class includes as particular cases several recently
introduced random matrices (e.g. Andoni et al., 2015; Yu et al., 2016), where good empirical
performance was observed. We go further to establish strong theoretical guarantees, see §3 and §4.
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A prominent example of an S matrix is the normalized Hadamard matrix H, defined recursively by

H1 = (1), and then for i > 1, Hi = 1√
2

(
Hi−1 Hi−1

Hi−1 −Hi−1

)
. Importantly, matrix-vector products

with H are computable in O(n log n) time via the fast Walsh-Hadamard transform, yielding large
computational savings. In addition, H matrices enable a significant space advantage: since the
fast Walsh-Hadamard transform can be computed without explicitly storing H, only O(n) space is
required to store the diagonal elements of (Di)

k
i=1. Note that these Hn matrices are defined only for

n a power of 2, but if needed, one can always adjust data by padding with 0s to enable the use of ‘the
next larger’ H, doubling the number of dimensions in the worst case.

Matrices H are representatives of a much larger family in S which also attains computational savings.
These are L2-normalized versions of Kronecker-product matrices of the form A1 ⊗ ...⊗Al ∈ Rn×n
for l ∈ N, where ⊗ stands for a Kronecker product and blocks Ai ∈ Rd×d have entries of the
same magnitude and pairwise orthogonal rows each. For these matrices, matrix-vector products are
computable in O(n(2d− 1) logd(n)) time (Zhang et al., 2015).

S includes also the Walsh matrices W = {wi,j} ∈ Rn×n, where wi,j = 1√
n

(−1)iN−1j0+...+i0jN−1

and iN−1...i0, jN−1...j0 are binary representations of i and j respectively.

For diagonal (Di)
k
i=1, we mainly consider Rademacher entries leading to the following matrices.

Definition 2.1. The S-Rademacher random matrix with k ∈ N blocks is below, where (D
(R)
i )ki=1

are diagonal with iid Rademacher random variables [i.e. Unif({±1})] on the diagonals:

M
(k)
SR =

k∏
i=1

SD
(R)
i . (1)

Having established the two classes of ROMs, we next apply them to dimensionality reduction.

3 The Orthogonal Johnson-Lindenstrauss Transform (OJLT)

Let X ⊂ Rn be a dataset of n-dimensional real vectors. The goal of dimensionality reduction via
random projections is to transform linearly each x ∈ X by a random mapping x

F7→ x′, where:
F : Rn → Rm for m < n, such that for any x,y ∈ X the following holds: (x′)>y′ ≈ x>y. If
we furthermore have E[(x′)>y′] = x>y then the dot-product estimator is unbiased. In particular,
this dimensionality reduction mechanism should in expectation preserve information about vectors’
norms, i.e. we should have: E[‖x′‖22] = ‖x‖22 for any x ∈ X .

The standard JLT mechanism uses the randomized linear map F = 1√
m
G, where G ∈ Rm×n is as

in §2, requiring mn multiplications to evaluate. Several fast variants (FJLTs) have been proposed by
replacing G with random structured matrices, such as sparse or circulant Gaussian matrices (Ailon
and Chazelle, 2006; Hinrichs and Vybíral, 2011; Vybíral, 2011; Zhang and Cheng, 2013). The fastest
of these variants has O(n log n) time complexity, but at a cost of higher MSE for dot-products.

Our Orthogonal Johnson-Lindenstrauss Transform (OJLT) is obtained by replacing the unstructured
random matrix G with a sub-sampled ROM from §2: either Gort, or a sub-sampled version M

(k),sub
SR

of the S-Rademacher ROM, given by sub-sampling rows from the left-most S matrix in the product.
We sub-sample since m < n. We typically assume uniform sub-sampling without replacement. The
resulting dot-product estimators for vectors x,y ∈ X are given by:

K̂base
m (x,y) =

1

m
(Gx)>(Gy) [unstructured iid baseline, previous state-of-the-art accuracy],

K̂ort
m (x,y) =

1

m
(Gortx)>(Gorty), K̂(k)

m (x,y) =
1

m

(
M

(k),sub
SR x

)> (
M

(k),sub
SR y

)
. (2)

We contribute the following closed-form expressions, which exactly quantify the mean-squared error
(MSE) for these three estimators. Precisely, the MSE of an estimator K̂(x,y) of the inner product
〈x,y〉 for x,y ∈ X is defined to be MSE(K̂(x,y)) = E

[
(K̂(x,y)− 〈x,y〉2)

]
. See the Appendix

for detailed proofs of these results and all others in this paper.
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Lemma 3.1. The MSE of the unstructured JLT dot-product estimator K̂base
m of x,y ∈ Rn using m-

dimensional random feature maps is unbiased, with MSE(K̂base
m (x,y)) = 1

m ((x>y)2 +‖x‖22‖y‖22).

Theorem 3.2. The estimator K̂ort
m is unbiased and satisfies, for n ≥ 4:

MSE(K̂ort
m (x,y))

=MSE(K̂base
m (x,y)) +

m

m− 1

[
‖x‖22‖y‖22n2

4I(n− 3)I(n− 4)

((
1

n
− 1

n+ 2

)
(I(n− 3)− I(n− 1))I(n− 4)

[
cos2(θ) +

1

2

]
+

I(n− 1) (I(n− 4)− I(n− 2))

(
1

n− 2
− 1

n

)[
cos2(θ)− 1

2

])
− 〈x,y〉2

]
,

(3)

where I(n) =
∫ π

0
sinn(x)dx =

√
πΓ((n+1)/2)
Γ(n/2+1) .

Theorem 3.3 (Key result). The OJLT estimator K̂(k)
m (x,y) with k blocks, using m-dimensional

random feature maps and uniform sub-sampling policy without replacement, is unbiased with

MSE(K̂(k)
m (x,y))=

1

m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2) + (4)

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2) +

(−1)k2k

nk−1

n∑
i=1

x2
i y

2
i

)
.

Proof (Sketch). For k = 1, the random projection matrix is given by sub-sampling rows from SD1,
and the computation can be carried out directly. For k ≥ 1, the proof proceeds by induction.
The random projection matrix in the general case is given by sub-sampling rows of the matrix
SDk · · ·SD1. By writing the MSE as an expectation and using the law of conditional expectations
conditioning on the value of the first k − 1 random matrices Dk−1, . . . ,D1, the statement of the
theorem for 1 SD block and for k − 1 SD blocks can be neatly combined to yield the result.

To our knowledge, it has not previously been possible to provide theoretical guarantees that
SD-product matrices outperform iid matrices. Combining Lemma 3.1 with Theorem 3.3 yields the
following important result.

Corollary 3.4 (Theoretical guarantee of improved performance). Estimators K̂(k)
m (subsampling

without replacement) yield guaranteed lower MSE than K̂base
m .

It is not yet clear when K̂ort
m is better or worse than K̂

(k)
m ; we explore this empirically in §6.

Theorem 3.3 shows that there are diminishing MSE benefits to using a large number k of SD

blocks. Interestingly, odd k is better than even: it is easy to observe that MSE(K̂
(2k−1)
m (x,y)) <

MSE(K̂
(2k)
m (x,y)) > MSE(K̂

(2k+1)
m (x,y)). These observations, and those in §5, help to under-

stand why empirically k = 3 was previously observed to work well (Yu et al., 2016).

If we take S to be a normalized Hadamard matrix H, then even though we are using sub-sampling,
and hence the full computational benefits of the Walsh-Hadamard transform are not available, still
K̂

(k)
m achieves improved MSE compared to the base method with less computational effort, as follows.

Lemma 3.5. There exists an algorithm (see Appendix for details) which computes an embedding for
a given datapoint x using K̂(k)

m with S set to H and uniform sub-sampling policy in expected time
min{O((k − 1)n log(n) + nm− (m−1)m

2 , kn log(n)}.
Note that for m = ω(k log(n)) or if k = 1, the time complexity is smaller than the brute force
Θ(nm). The algorithm uses a simple observation that one can reuse calculations conducted for the
upper half of the Hadamard matrix while performing computations involving rows from its other half,
instead of running these calculations from scratch (details in the Appendix).

An alternative to sampling without replacement is deterministically to choose the first m rows. In our
experiments in §6, these two approaches yield the same empirical performance, though we expect
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that the deterministic method could perform poorly on adversarially chosen data. The first m rows
approach can be realized in time O(n log(m) + (k − 1)n log(n)) per datapoint.

Theorem 3.3 is a key result in this paper, demonstrating that SD-product matrices yield both statistical
and computational improvements compared to the base iid procedure, which is widely used in practice.
We next show how to obtain further gains in accuracy.

3.1 Complex variants of the OJLT

We show that the MSE benefits of Theorem 3.3 may be markedly improved by using SD-product
matrices with complex entries M(k)

SH. Specifically, we consider the variant S-Hybrid random matrix
below, where D

(U)
k is a diagonal matrix with iid Unif(S1) random variables on the diagonal, inde-

pendent of (D
(R)
i )k−1

i=1 , and S1 is the unit circle of C. We use the real part of the Hermitian product
between projections as a dot-product estimator; recalling the definitions of §2, we use:

M
(k)
SH = SD

(U)
k

k−1∏
i=1

SD
(R)
i , K̂H,(k)

m (x,y) =
1

m
Re

[(
M

(k),sub
SH x

)> (
M

(k),sub
SH y

)]
. (5)

Remarkably, this complex variant yields exactly half the MSE of the OJLT estimator.

Theorem 3.6. The estimator K̂H,(k)
m (x,y), applying uniform sub-sampling without replacement, is

unbiased and satisfies: MSE(K̂
H,(k)
m (x,y)) = 1

2MSE(K̂
(k)
m (x,y)).

This large factor of 2 improvement could instead be obtained by doubling m for K̂(k)
m . However,

this would require doubling the number of parameters for the transform, whereas the S-Hybrid
estimator requires additional storage only for the complex parameters in the matrix D

(U)
k . Strikingly,

it is straightforward to extend the proof of Theorem 3.6 (see Appendix) to show that rather than
taking the complex random variables in M

(k),sub
SH to be Unif(S1), it is possible to take them to be

Unif({1,−1, i,−i}) and still obtain exactly the same benefit in MSE.

Theorem 3.7. For the estimator K̂H,(k)
m defined in Equation (5): replacing the random matrix D

(U)
k

(which has iid Unif(S1) elements on the diagonal) with instead a random diagonal matrix having iid
Unif({1,−1, i,−i}) elements on the diagonal, does not affect the MSE of the estimator.

It is natural to wonder if using an SD-product matrix with more complex random variables (for all
SD blocks) would improve performance still further. However, interestingly, this appears not to be
the case; details are provided in the Appendix §8.7.

3.2 Sub-sampling with replacement

Our results above focus on SD-product matrices where rows have been sub-sampled without
replacement. Sometimes (e.g. for parallelization) it can be convenient instead to sub-sample with
replacement. As might be expected, this leads to worse MSE, which we can quantify precisely.

Theorem 3.8. For each of the estimators K̂(k)
m and K̂H,(k)

m , if uniform sub-sampling with (rather
than without) replacement is used then the MSE is worsened by a multiplicative constant of n−1

n−m .

4 Kernel methods with ROMs

ROMs can also be used to construct high-quality random feature maps for non-linear kernel
approximation. We analyze here the angular kernel, an important example of a Pointwise Nonlinear
Gaussian kernel (PNG), discussed in more detail at the end of this section.

Definition 4.1. The angular kernel Kang is defined on Rn by Kang(x,y) = 1− 2θx,y

π , where θx,y
is the angle between x and y.
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To employ random feature style approximations to this kernel, we first observe it may be rewritten as

Kang(x,y) = E [sign(Gx)sign(Gy)] ,

where G ∈ R1×n is an unstructured isotropic Gaussian vector. This motivates approximations of the
form:

K̂angm(x,y) =
1

m
sign(Mx)>sign(My), (6)

where M ∈ Rm×n is a random matrix, and the sign function is applied coordinate-wise. Such
kernel estimation procedures are heavily used in practice (Rahimi and Recht, 2007), as they allow
fast approximate linear methods to be used (Joachims, 2006) for inference tasks. If M = G, the
unstructured Gaussian matrix, then we obtain the standard random feature estimator. We shall contrast
this approach against the use of matrices from the ROMs family.

When constructing random feature maps for kernels, very often m > n. In this case, our structured
mechanism can be applied by concatenating some number of independent structured blocks. Our
theoretical guarantees will be given just for one block, but can easily be extended to a larger number
of blocks since different blocks are independent.

The standard random feature approximation K̂ang,base
m for approximating the angular kernel is

defined by taking M to be G, the unstructured Gaussian matrix, in Equation (6), and satisfies the
following.

Lemma 4.2. The estimator K̂ang,base
m is unbiased and MSE(K̂ang,base

m (x,y)) =
4θx,y(π−θx,y)

mπ2 .

The MSE of an estimator K̂ang(x,y) of the true angular kernel Kang(x,y) is defined analogously
to the MSE of an estimator of the dot product, given in §3. Our main result regarding angular kernels
states that if we instead take M = Gort in Equation (6), then we obtain an estimator K̂ang,ort

m with
strictly smaller MSE, as follows.

Theorem 4.3. Estimator K̂ang,ort
m is unbiased and satisfies:

MSE(K̂ang,ort
m (x,y)) < MSE(K̂ang,base

m (x,y)).

We also derive a formula for the MSE of an estimator K̂ang,M
m of the angular kernel which replaces G

with an arbitrary random matrix M and uses m random feature maps. The formula is helpful to see
how the quality of the estimator depends on the probabilities that the projections of the rows of M are
contained in some particular convex regions of the 2-dimensional space Lx,y spanned by datapoints
x and y. For an illustration of the geometric definitions introduced in this Section, see Figure 1. The
formula depends on probabilities involving events Ai = {sgn((ri)Tx) 6= sgn((ri)Ty)}, where
ri stands for the ith row of the structured matrix. Notice that Ai = {riproj ∈ Cx,y}, where riproj
stands for the projection of ri into Lx,y and Cx,y is the union of two cones in Lx,y, each of angle θx,y.

Theorem 4.4. Estimator K̂ang,M
m satisfies the following, where: δi,j = P[Ai ∩ Aj ]− P[Ai]P[Aj ]:

MSE(K̂ang,M
m (x,y)) =

1

m2

[
m−

m∑
i=1

(1− 2P[Ai])2

]
+

4

m2

 m∑
i=1

(P[Ai]− θx,y
π

)2 +
∑
i 6=j

δi,j

 .
Note that probabilities P[Ai] and δi,j depend on the choice of M. It is easy to prove that for
unstructured G and Gort we have: P[Ai] =

θx,y

π . Further, from the independence of the rows of
G, δi,j = 0 for i 6= j. For unstructured G we obtain Lemma 4.2. Interestingly, we see that to
prove Theorem 4.3, it suffices to show δi,j < 0, which is the approach we take (see Appendix). If
we replace G with M

(k)
SR, then the expression ε = P[Ai] − θx,y

π does not depend on i. Hence, the
angular kernel estimator based on Hadamard matrices gives smaller MSE estimator if and only if∑
i 6=j δi,j +mε2 < 0. It is not yet clear if this holds in general.

As alluded to at the beginning of this section, the angular kernel may be viewed as a member of a wie
family of kernels known as Pointwise Nonlinear Gaussian kernels.
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Figure 1: Left part: Left: g1 is orthogonal to Lx,y. Middle: g1 ∈ Lx,y. Right: g1 is close to orthogonal to
Lx,y. Right part: Visualization of the Cayley graph explored by the Hadamard-Rademacher process in two
dimensions. Nodes are colored red, yellow, light blue, dark blue, for Cayley distances of 0, 1, 2, 3 from the
identity matrix respectively. See text in §5.

Definition 4.5. For a given function f , the Pointwise Nonlinear Gaussian kernel (PNG) Kf is
defined by Kf (x,y) = E

[
f(gTx)f(gTy)

]
, where g is a Gaussian vector with i.i.d N (0, 1) entries.

Many prominent examples of kernels (Williams, 1998; Cho and Saul, 2009) are PNGs. Wiener’s
tauberian theorem shows that all stationary kernels may be approximated arbitrarily well by sums of
PNGs (Samo and Roberts, 2015). In future work we hope to explore whether ROMs can be used to
achieve statistical benefit in estimation tasks associated with a wider range of PNGs.

5 Understanding the effectiveness of orthogonality

Here we build intuitive understanding for the effectiveness of ROMs. We examine geometrically the
angular kernel (see §4), then discuss a connection to random walks over orthogonal matrices.

Angular kernel. As noted above for the Gort-mechanism, smaller MSE than that for unstructured
G is implied by the inequality P[Ai ∩Aj ] < P[Ai]P[Aj ], which is equivalent to: P[Aj |Ai] < P[Aj ].
Now it becomes clear why orthogonality is crucial. Without loss of generality take: i = 1, j = 2, and
let g1 and g2 be the first two rows of Gort.

Consider first the extreme case (middle of left part of Figure 1), where all vectors are 2-dimensional.
Recall definitions from just after Theorem 4.3. If g1 is in Cx,y then it is much less probable for
g2 also to belong to Cx,y. In particular, if θ < π

2 then the probability is zero. That implies the
inequality. On the other hand, if g1 is perpendicular to Lx,y then conditioning on Ai does not have
any effect on the probability that g2 belongs to Cx,y (left subfigure of Figure 1). In practice, with high
probability the angle φ between g1 and Lx,y is close to π

2 , but is not exactly π
2 . That again implies

that conditioned on the projection g1
p of g1 into Lx,y to be in Cx,y, the more probable directions of

g2
p are perpendicular to g1

p (see: ellipsoid-like shape in the right subfigure of Figure 1 which is the
projection of the sphere taken from the (n− 1)-dimensional space orthogonal to g1 into Lx,y). This
makes it less probable for g2

p to be also in Cx,y. The effect is subtle since φ ≈ π
2 , but this is what

provides superiority of the orthogonal transformations over state-of-the-art ones in the angular kernel
approximation setting.

Markov chain perspective. We focus on Hadamard-Rademacher random matrices HDk...HD1,
a special case of the SD-product matrices described in Section 2. Our aim is to provide intuition
for how the choice of k affects the quality of the random matrix, following our earlier observations
just after Corollary 3.4, which indicated that for SD-product matrices, odd values of k yield greater
benefits than even values, and that there are diminishing benefits from higher values of k. We proceed
by casting the random matrices into the framework of Markov chains.

Definition 5.1. The Hadamard-Rademacher process in n dimensions is the Markov chain (Xk)∞k=0
taking values in the orthogonal group O(n), with X0 = I almost surely, and Xk = HDkXk−1

almost surely, where H is the normalized Hadamard matrix in n dimensions, and (Dk)∞k=1 are iid
diagonal matrices with independent Rademacher random variables on their diagonals.

Constructing an estimator based on Hadamard-Rademacher matrices is equivalent to simulating
several time steps from the Hadamard-Rademacher process. The quality of estimators based on
Hadamard-Rademacher random matrices comes from a quick mixing property of the corresponding
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(a) g50c - pointwise evalu-
ation MSE for inner product
estimation

(b) random - angular kernel (c) random - angular kernel
with true angle π/4

(d) g50c - inner product es-
timation MSE for variants of
3-block SD-product matri-
ces.

(e) LETTER - dot-product (f) USPS - dot-product (g) LETTER - angular kernel (h) USPS - angular kernel

Figure 2: Top row: MSE curves for pointwise approximation of inner product and angular kernels on the
g50c dataset, and randomly chosen vectors. Bottom row: Gram matrix approximation error for a variety of
data sets, projection ranks, transforms, and kernels. Note that the error scaling is dependent on the application.

Markov chain. The following demonstrates attractive properties of the chain in low dimensions.

Proposition 5.2. The Hadamard-Rademacher process in two dimensions: explores a state-space of
16 orthogonal matrices, is ergodic with respect to the uniform distribution on this set, has period 2,
the diameter of the Cayley graph of its state space is 3, and the chain is fully mixed after 3 time steps.

This proposition, and the Cayley graph corresponding to the Markov chain’s state space (Figure 1
right), illustrate the fast mixing properties of the Hadamard-Rademacher process in low dimensions;
this agrees with the observations in §3 that there are diminishing returns associated with using a large
number k of HD blocks in an estimator. The observation in Proposition 5.2 that the Markov chain
has period 2 indicates that we should expect different behavior for estimators based on odd and even
numbers of blocks of HD matrices, which is reflected in the analytic expressions for MSE derived in
Theorems 3.3 and 3.6 for the dimensionality reduction setup.

6 Experiments

We present comparisons of estimators introduced in §3 and §4, illustrating our theoretical results, and
further demonstrating the empirical success of ROM-based estimators at the level of Gram matrix
approximation. We compare estimators based on: unstructured Gaussian matrices G, matrices Gort,
S-Rademacher and S-Hybrid matrices with k = 3 and different sub-sampling strategies. Results
for k > 3 do not show additional statistical gains empirically. Additional experimental results,
including a comparison of estimators using different numbers of SD blocks, are in the Appendix §10.
Throughout, we use the normalized Hadamard matrix H for the structured matrix S.

6.1 Pointwise kernel approximation

Complementing the theoretical results of §3 and §4, we provide several salient comparisons of the
various methods introduced - see Figure 2 top. Plots presented here (and in the Appendix) compare
MSE for dot-product and angular and kernel. They show that estimators based on Gort, S-Hybrid
and S-Rademacher matrices without replacement, or using the first m rows, beat the state-of-the-art
unstructured G approach on accuracy for all our different datasets in the JLT setup. Interestingly, the
latter two approaches give also smaller MSE than Gort-estimators. For angular kernel estimation,
where sampling is not relevant, we see that Gort and S-Rademacher approaches again outperform
the ones based on matrices G.
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6.2 Gram matrix approximation

Moving beyond the theoretical guarantees established in §3 and §4, we show empirically that the
superiority of estimators based on ROMs is maintained at the level of Gram matrix approximation.
We compute Gram matrix approximations (with respect to both standard dot-product, and angular
kernel) for a variety of datasets. We use the normalized Frobenius norm error ‖K− K̂‖2/‖K‖2
as our metric (as used by Choromanski and Sindhwani, 2016), and plot the mean error based on
1,000 repetitions of each random transform - see Figure 2 bottom. The Gram matrices are computed
on a randomly selected subset of 550 data points from each dataset. As can be seen, the S-Hybrid
estimators using the “no-replacement” or “first m rows” sub-sampling strategies outperform even
the orthogonal Gaussian ones in the dot-product case. For the angular case, the Gort-approach and
S-Rademacher approach are practically indistinguishable.

7 Conclusion

We defined the family of random ortho-matrices (ROMs). This contains the SD-product matrices,
which include a number of recently proposed structured random matrices. We showed theoretically
and empirically that ROMs have strong statistical and computational properties (in several cases
outperforming previous state-of-the-art) for algorithms performing dimensionality reduction and
random feature approximations of kernels. We highlight Corollary 3.4, which provides a theoretical
guarantee that SD-product matrices yield better accuracy than iid matrices in an important dimension-
ality reduction application (we believe the first result of this kind). Intriguingly, for dimensionality
reduction, using just one complex structured matrix yields random features of much better quality.
We provided perspectives to help understand the benefits of ROMs, and to help explain the behavior
of SD-product matrices for various numbers of blocks. Our empirical findings suggest that our
theoretical results might be further strengthened, particularly in the kernel setting.
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APPENDIX:
The Unreasonable Effectiveness of Random Orthogonal Embeddings

We present here details and proofs of all the theoretical results presented in the main body of the
paper. We also provide further experimental results in §10.

We highlight proofs of several key results that may be of particular interest to the reader:

• The proof of Theorem 3.3; see §8.3.

• The proof of Theorem 3.6; see §8.5.

• The proof of Theorem 4.3; see §9.2.

In the Appendix we will use interchangeably two notations for the dot product between vectors x and
y, namely: x>y and 〈x,y〉.

8 Proofs of results in §3

8.1 Proof of Lemma 3.1

Proof. Denote Xi = (gi)>x · (gi)>y, where gi stands for the ith row of the unstructured Gaussian
matrix G ∈ Rm×n. Note that we have:

K̂base
m (x,y) =

1

m

m∑
i=1

Xi. (7)

Denote gi = (gi1, ..., g
i
n)>. Notice that from the independence of gijs and the fact that: E[gij ] = 0,

E[(gij)
2] = 1, we get: E[Xi] =

∑n
i=1 xiyi = x>y, thus the estimator is unbiased. Since the

estimator is unbiased, we have: MSE(K̂base
m (x,y)) = V ar(K̂base

m (x,y)). Thus we get:

MSE(K̂base
m (x,y)) =

1

m2

∑
i,j

(E[XiXj ]− E[Xi]E[Xj ]). (8)

From the independence of different Xis, we get:

MSE(K̂base
m (x,y)) =

1

m2

∑
i

(E[X2
i ]− (E[Xi])

2). (9)

Now notice that different Xis have the same distribution, thus we get:

MSE(K̂base
m (x,y)) =

1

m
(E[X2

1 ]− (E[X1])2). (10)

From the unbiasedness of the estimator, we have: E[X1] = x>y. Therefore we obtain:

MSE(K̂base
m (x,y)) =

1

m
(E[X2

1 ]− (x>y)2). (11)

Now notice that

E[X2
1 ] = E[

∑
i1,j1,i2,j2

gi1gj1gi2gj2xi1yj1xi2yj2 ] =
∑

i1,j1,i2,j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ], (12)

where (g1, ..., gn) stands for the first row of G. In the expression above the only nonzero terms
corresponds to quadruples (i1, j1, i2, j2), where no index appears odd number of times. Therefore,
from the inclusion-exclusion principle and the fact that E[g2

i ] = 1 and E[g4
i ] = 3, we obtain

E[X2
1 ] =

∑
i1=j1,i2=j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ] +
∑

i1=i2,j1=j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ] (13)
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+
∑

i1=j2,i2=j1

xi1yj1xi2yj2E[gi1gj1gi2gj2 ]−
∑

i1=j1=i2=j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ]

(14)

= ((x>y)2 −
n∑
i=1

x2
i y

2
i + 3

n∑
i=1

x2
i y

2
i ) + ((‖x‖2‖y‖2)2 −

n∑
i=1

x2
i y

2
i + 3

n∑
i=1

x2
i y

2
i ) (15)

+ ((x>y)2 −
n∑
i=1

x2
i y

2
i + 3

n∑
i=1

x2
i y

2
i )− 3 · 2

n∑
i=1

x2
i y

2
i (16)

= (‖x‖2‖y‖2)2 + 2(x>y)2. (17)

Therefore we obtain

MSE(K̂base
m (x,y)) =

1

m
((‖x‖2‖y‖2)2 +2(x>y)2− (x>y)2) =

1

m
(‖x‖22‖y‖22 +(x>y)2), (18)

which completes the proof.

8.2 Proof of Theorem 3.2

Proof. The unbiasedness of the Gaussian orthogonal estimator comes from the fact that every row of
the Gaussian orthogonal matrix is sampled from multivariate Gaussian distribution with entries taken
independently at random from N (0, 1).

Note that:
Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ], (19)

where: Xi = (r>i x)(r>i y), Xj = (r>j x)(r>j y) and ri, rj stand for the ith and jth row of the
Gaussian orthogonal matrix respectively. From the fact that Gaussian orthogonal estimator is
unbiased, we get:

E[Xi] = x>y. (20)

Let us now compute E[XiXj ]. Writing Z1 = ri, Z2 = rj , we begin with some geometric observa-
tions:

• If φ ∈ [0, π/2] is the acute angle between Z1 and the x-y plane, then φ has density
f(φ) = (n− 2) cos(φ) sinn−3(φ).

• The squared norm of the projection of Z1 into the x-y plane is therefore given by the product
of a χ2

n random variable (the norm of Z2), multiplied by cos2(φ), where φ is distributed as
described above, independently from the χ2

n random variable.

• The angle ψ ∈ [0, 2π) between x and the projection of Z1 into the x-y plane is distributed
uniformly.

• Conditioned on the angle φ, the direction of Z2 is distributed uniformly on the hyperplane
of Rn orthogonal to Z1. Using hyperspherical coordinates for the unit hypersphere of this
hyperplane, we may pick an orthonormal basis of the x-y plane such that the first basis
vector is the unit vector in the direction of the projection of Z1, and the coordinates of
the projection of Z2 with respect to this basis are (sin(φ) cos(ϕ1), sin(ϕ1) cos(ϕ2)), where
ϕ1, ϕ2 are random angles taking values in [0, π], with densities given by sinn−3(ϕ1)I(n−
3)−1 and sinn−4(ϕ2)I(n − 4)−1 respectively. Here I(k) =

∫ π
0

sink(x)dx =
√
πΓ((k +

1)/2)/Γ(k/2 + 1).

• The angle t that the projection of Z2 into the x-y plane makes with the projection of Z1

then satisfies tan(t) = sin(ϕ1) cos(ϕ2)/(sin(φ) cos(ϕ1)) = cos(ϕ1)/ sin(φ)× tan(ϕ1).

Applying these observations, we get:

E[XiXj ]

=E[(r>i x)(r>i y)(r>j x)(r>j y)]

=‖x‖22‖y‖22n2

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)I(n− 3)−1

∫ π

0

dϕ2 sinn−4(ϕ2)I(n− 4)−1×
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∫ 2π

0

dψ

2π

(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

)
cos(ψ) cos(ψ + θ) cos(t− ψ) cos(t− θ − ψ).

(21)

We first apply the cosine product formula to the two adjacent pairs making up the final product of
four cosines involving ψ in the integrand above. The majority of these terms vanish upon integrating
with respect to ψ, due to the periodicity of the integrands wrt ψ. We are thus left with:

E[XiXj ]

=‖x‖22‖y‖22n2

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)I(n− 3)−1

∫ π

0

dϕ2 sinn−4(ϕ2)I(n− 4)−1×

(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

)(1

4
cos2(θ) +

1

8
cos(2t)

)
. (22)

We now consider two constituent parts of the integral above: one involving the term 1
4 cos2(θ), and

the other involving 1
8 cos(2t). We deal first with the former; its evaluation requires several standard

trigonometric integrals:

‖x‖22‖y‖22n2

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)I(n− 3)−1

∫ π

0

dϕ2 sinn−4(ϕ2)I(n− 4)−1×(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

) 1

4
cos2(θ)

=
‖x‖22‖y‖22n2 cos2(θ)

4I(n− 3)I(n− 4)

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)×(
sin2(φ) cos2(ϕ1)I(n− 4) + sin2(ϕ1) (I(n− 4)− I(n− 2))

)
=
‖x‖22‖y‖22n2 cos2(θ)

4I(n− 3)I(n− 4)

∫ π/2

0

dφ(n− 2) sinn−3(φ) cos(φ) cos2(φ)×(
sin2(φ)(I(n− 3)− I(n− 1))I(n− 4) + I(n− 1) (I(n− 4)− I(n− 2))

)
=
‖x‖22‖y‖22n2 cos2(θ)

4I(n− 3)I(n− 4)

((
1

n
− 1

n+ 2

)
(I(n− 3)− I(n− 1))I(n− 4)+

I(n− 1) (I(n− 4)− I(n− 2))

(
1

n− 2
− 1

n

))
. (23)

We may now turn our attention to the other constituent integral of Equation (22), which in-
volves the term cos(2t). Recall that from our earlier geometric considerations, we have tan(t) =
cos(ϕ2)
sin(φ) tan(φ1). An elementary trigonometric calculation using the tan half-angle formula yields:

cos(2t) = cos

(
2 arctan

(
cos(ϕ2)

sin(φ)
tan(ϕ1)

))

=
1− cos2(ϕ2)

sin2(φ)
tan2(ϕ1)

cos2(ϕ2)
sin2(φ)

tan2(ϕ1) + 1

=
sin2(φ) cos2(ϕ1)− cos2(ϕ2) sin2(ϕ1)

cos2(ϕ2) sin2(ϕ1) + sin2(φ) cos2(ϕ1)
. (24)

This observation greatly simplifies the integral from Equation (22) involving the term cos(2t), as
follows:

‖x‖22‖y‖22n2

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)I(n− 3)−1

∫ π

0

dϕ2 sinn−4(ϕ2)I(n− 4)−1×(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

) 1

8
cos(2t)

=
‖x‖22‖y‖22n2

8I(n− 3)I(n− 4)

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)

∫ π

0

dϕ2 sinn−4(ϕ2)×
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(
sin2(φ) cos2(ϕ1) + sin2(ϕ1) cos2(ϕ2)

) sin2(φ) cos2(ϕ1)− cos2(ϕ2) sin2(ϕ1)

cos2(ϕ2) sin2(ϕ1) + sin2(φ) cos2(ϕ1)

=
‖x‖22‖y‖22n2

8I(n− 3)I(n− 4)

∫ π/2

0

dφf(φ) cos2(φ)

∫ π

0

dϕ1 sinn−3(ϕ1)

∫ π

0

dϕ2 sinn−4(ϕ2)×(
sin2(φ) cos2(ϕ1)− cos2(ϕ2) sin2(ϕ1)

)
.
(25)

But now observe that this integral is exactly of the form dealt with in (23), hence we may immediately
identify its value as:

‖x‖22‖y‖22n2

8I(n− 3)I(n− 4)

((
1

n
− 1

n+ 2

)
(I(n− 3)− I(n− 1))I(n− 4)−

I(n− 1) (I(n− 4)− I(n− 2))

(
1

n− 2
− 1

n

))
. (26)

Thus substituting our calculations back into Equation (22), we obtain:

E[XiXj ]

=
‖x‖22‖y‖22n2

4I(n− 3)I(n− 4)

((
1

n
− 1

n+ 2

)
(I(n− 3)− I(n− 1))I(n− 4)

[
cos2(θ) +

1

2

]
+

I(n− 1) (I(n− 4)− I(n− 2))

(
1

n− 2
− 1

n

)[
cos2(θ)− 1

2

])
. (27)

The covariance term is obtained by subtracting off E[Xi]E[Xi] = 〈x,y〉2. Now we sum over
m(m − 1) covariance terms and take into account the normalization factor 1√

m
for the Gaussian

matrix entries. That gives the extra multiplicative term m(m−1)
m2 = m−1

m . Thus we obtain the quantity
in the statement of the theorem, completing the proof.

8.3 Proof of Theorem 3.3

We obtain Theorem 3.3 through a sequence of smaller propositions. Broadly, the strategy is first to
show that the estimators of Theorem 3.3 are unbiased (Proposition 8.1). An expression for the mean
squared error of the estimator K̂(1)

m with one matrix block is then derived (Proposition 8.2). Finally,
a straightforward recursive formula for the mean squared error of the general estimator is derived
(Proposition 8.3), and the result of the theorem then follows.
Proposition 8.1. The estimator K̂(k)

m (x,y) is unbiased, for all k, n ∈ N, m ≤ n, and x,y ∈ Rn.

Proof. Notice first that since rows of S = {si,j} are orthogonal and are L2-normalized, the matrix S
is an isometry. Thus each block SDi is also an isometry. Therefore it suffices to prove the claim for
k = 1.

Then, denoting by J = (J1, . . . , Jm) the indices of the randomly selected rows of SD1, note that the
estimator K̂(1)

m (x,y) may be expressed in the form

K̂(1)
m (x,y) =

1

m

m∑
i=1

(√
n(SD1)Jix×

√
n(SD1)Jiy

)
,

where (SD1)i is the ith row of SD1. Since each of the rows of SD1 has the same marginal
distribution, it suffices to demonstrate that E[yTD1S

>
1 S1D1x] = x>y

n , where S1 is the first row of
S. Now note

E[y>DS>1 S1Dx]=
1

n
E

[
n∑
i=1

yidi ×
n∑
i=1

xidi

]
=

1

n
E

[
n∑
i=1

xiyid
2
i

]
+ E

∑
i 6=j

xiyjdidj

=
x>y

n
,

where di = Dii are iid Rademacher random variables, for i = 1, . . . , n.
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With Proposition 8.1 in place, the mean square error for the estimator K̂(1)
m using one matrix block

can be derived.
Proposition 8.2. The MSE of the single SD(R)-block m-feature estimator K̂(1)

m (x,y) for 〈x,y〉
using the without replacement row sub-sampling strategy is

MSE(K̂(1)
m (x,y)) =

1

m

(
n−m
n− 1

)(
‖x‖2‖y‖2 + 〈x,y〉2 − 2

n∑
i=1

x2
i y

2
i

)
.

Proof. First note that since K̂(1)
m (x,y) is unbiased, the mean squared error is simply the variance of

this estimator. Secondly, denoting the indices of the m randomly selected rows by J = (J1, . . . , Jm),
by conditioning on J we obtain the following:

Var
(
K̂(1)
m (x,y)

)
=

n2

m2

(
E

[
Var

(
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
)]

+ Var

(
E

[
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
]))

.

Now note that the conditional expectation in the second term is constant as a function of J , since
conditional on whichever rows are sampled, the resulting estimator is unbiased. Taking the variance
of this constant therefore causes the second term to vanish. Now consider the conditional variance
that appears in the first term:

Var

(
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
)

=

m∑
p=1

m∑
p′=1

Cov
(

(SDx)Jm(SDy)Jp , (SDx)Jp′ (SDy)Jp′
∣∣J)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lxiyjxkylCov (didj , dkdl) ,

where we write D = Diag(d1, . . . , dn). Now note that Cov (didj , dkdl) is non-zero iff i, j are
distinct, and {i, j} = {k, l}, in which case the covariance is 1. We therefore obtain:

Var

(
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i 6=j

(
sJpisJpjsJp′ isJp′ jx

2
i y

2
j + sJpisJpjsJp′ jsJp′ ixiyjxjyi

)
.

Substituting this expression for the conditional variance into the decomposition of the MSE of the
estimator, we obtain the result of the theorem:

Var
(
K̂(1)
m (x,y)

)
=
n2

m2
E

 m∑
p,p′=1

n∑
i 6=j

(
sJpisJpjsJp′ isJp′ jx

2
i y

2
j + sJpisJpjsJp′ jsJp′ ixiyjxjyi

)
=
n2

m2

m∑
p,p′=1

n∑
i6=j

(
x2
i y

2
j + xixjyiyj

)
E
[
sJpisJpjsJp′ isJp′ j

]
.

We now consider the law on the index variables J = (J1, . . . , Jm) induced by the sub-sampling
strategy without replacement to evaluate the expectation in this last term. If p = p′, the integrand of
the expectation is deterministically 1/n2. If p 6= p′, then we obtain:

E
[
sJpisJpjsJp′ isJp′ j

]
=E

[
sJpisJpjE

[
sJp′ isJp′ j

∣∣Jp]]
=E
[
sJpisJpj

[(
1

n

(
n/2− 1

n− 1

)
− 1

n

(
n/2

n− 1

))
1{sJpisJpj=1/n}+(

1

n

(
n/2

n− 1

)
− 1

n

(
n/2− 1

n− 1

))
1{sJpisJpj=−1/n}

]]
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=
1

n(n− 1)
E
[
sJpisJpj

(
1{sJpisJpj=−1/n} − 1{sJpisJpj=1/n}

)]
=

1

n2(n− 1)
,

where we have used the fact that the products sJpisJpj and sJp′ isJp′ j take values in {±1/n}, and
because distinct rows of S are orthogonal, the marginal probability of each of the two values is 1/2.
A simple adjustment, using almost-sure distinctness of Jp and Jp′ , yields the conditional probabilities
needed to evaluate the conditional expectation that appears in the calculation above.

Substituting the values of these expectations back into the expression for the variance of K̂(1)
m (x,y)

then yields

Var(K̂(1)
m (x,y)) =

n2

m2

n∑
i 6=j

(
x2
i y

2
j + xixjyiyj

)(
m× 1

n2
−m(m− 1)× 1

n2(n− 1)

)

=
1

m

(
1− m− 1

n− 1

) n∑
i 6=j

(
x2
i y

2
j + xixjyiyj

)

=
1

m

(
1− m− 1

n− 1

) n∑
i,j=1

(x2
i y

2
j + xixjyiyj)− 2

n∑
i=1

x2
i y

2
i


=

1

m

(
n−m
n− 1

)(
〈x,y〉2 + ‖x‖2‖y‖2 − 2

n∑
i=1

x2
i y

2
i

)
,

as required.

We now turn our attention to the following recursive expression for the mean squared error of a
general estimator.
Proposition 8.3. Let k ≥ 2. We have the following recursion for the MSE of K(k)

m (x, y):

MSE(K̂(k)
m (x,y)) = E

[
MSE

(
K̂(k−1)
m (SD1x,SD1y)|D1

)]
.

Proof. The result follows from a straightforward application of the law of total variance, conditioning
on the matrix D1. Observe that

MSE(K̂(k)
m (x,y)) = Var(K̂(k)

m (x,y))

= E
[
Var

(
K̂(k)
m (x,y)

∣∣∣D1

)]
+ Var

(
E
[
K̂(k)
m (x,y)

∣∣∣D1

])
= E

[
Var

(
K̂(k−1)
m (SD1x,SD1y)

∣∣∣D1

)]
+ Var

(
E
[
K̂(k−1)
m (SD1x,SD1y)

∣∣∣D1

])
.

But examining the conditional expectation in the second term, we observe

E
[
K̂(k−1)
m (SD1x,SD1y)

∣∣∣D1

]
= 〈SD1x,SD1y〉 almost surely ,

by unbiasedness of the estimator, and since SD1 is orthogonal almost surely, this is equal to the
(constant) inner product 〈x,y〉 almost surely. This conditional expectation therefore has 0 variance,
and so the second term in the expression for the MSE above vanishes, which results in the statement
of the proposition.

With these intermediate propositions established, we are now in a position to prove Theorem 3.3. In
order to use the recursive result of Proposition 8.3, we require the following lemma.
Lemma 8.4. For all x, y,∈ Rn, we have

E

[
n∑
i=1

(SDx)2
i (SDy)2

i

]
=

1

n

(
‖x‖2‖y‖2 + 2〈x,y〉2 − 2

n∑
i=1

x2
i y

2
i

)
.
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Proof. The result follows by direct calculation. Note that

E

[
n∑
i=1

(SDx)
2
i (SDy)

2
i

]
= nE

( n∑
a=1

s1adaxa

)2(∑
a=1

s1adaya

)2


= n

n∑
i,j,k,l=1

s1is1js1ks1lxixjykylE [didjdkdl] ,

where the first inequality follows since the n summands indexed by i in the initial expectation are
identically distributed. Now note that the expectation E [didjdkdl] is non-zero iff i = j = k = l, or
i = j 6= k = l, or i = k 6= j = l, or i = l 6= k = l; in all such cases, the expectation takes the value
1. Substituting this into the above expression and collecting terms, we obtain

E

[
n∑
i=1

(SDx)
2
i (SDy)

2
i

]
=

1

n

 n∑
i=1

x2
i y

2
i +

∑
i 6=j

x2
i y

2
i + 2

∑
i 6=j

xixjyiyj


=

1

n

 n∑
i,j=1

x2
i y

2
j + 2

n∑
i,j=1

xixjyiyj − 2

n∑
i=1

x2
i y

2
i

 ,

from which the statement of the lemma follows immediately.

Proof of Theorem 3.3. Recall that we aim to establish the following general expression for k ≥ 1:

MSE(K̂(k)
m (x,y))=

1

m

(
n−m
n−1

)(
((x>y)2+‖x‖2‖y‖2)+

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2+‖x‖2‖y‖2)+ (−1)k2k

nk−1

n∑
i=1

x2i y
2
i

)
.

We proceed by induction. The case k = 1 is verified by Proposition 8.2. For the inductive step,
suppose the result holds for some k ∈ N. Then observe by Proposition 8.3 and the induction
hypothesis, we have

MSE(K̂(k+1)
m (x,y)) = E

[
MSE

(
K̂(k−1)
m (SD1x,SD1y)|D1

)]
=

1

m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2) +

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2)

+
(−1)k2k

nk−1

n∑
i=1

E
[
(SD1x)2

i (SD1y)2
i

])
,

where we have used that SD1 is almost surely orthogonal, and therefore ‖SD1x‖2 = ‖x‖2 almost
surely, ‖SD1y‖2 = ‖y‖2 almost surely, and 〈SD1x,SD1y〉 = 〈x,y〉 almost surely. Applying
Lemma 8.4 to the remaining expectation and collecting terms yields the required expression for
MSE(K̂

(k+1)
m (x,y)), and the proof is complete.

8.4 Proof of Lemma 3.5

Proof. Consider the last block H that is sub-sampled. Notice that if rows r1 and r2 of H of indices i
and n

2 + i are chosen then from the recursive definition of H we conclude that (r2)>x = (r1
1)>x−

(r1
2)>x, where r1

1, r
1
2 stand for the first and second half of r1 respectively. Thus computations of

(r1)>x can be reused to compute both (r1)>x and (r2)>x in time n + O(1) instead of 2n. If we
denote by r the expected number of pairs of rows (i, n2 + i) that are chosen by the random sampling
mechanism, then we see that by applying the trick above for all the r pairs, we obtain time complexity
O((k − 1)n log(n) + n(m − 2r) + nr + r), where: O((k − 1)n log(n)) is the time required to
compute first (k − 1) HD blocks (with the use of Walsh-Hadamard Transform), O(n(m − 2r))
stands for time complexity of the brute force computations for these rows that were not coupled in
the last block and O(nr + r) comes from the above trick applied to all r aforementioned pairs of
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rows. Thus, to obtain the first term in the min-expression on time complexity from the statement of
the lemma, it remains to show that

E[r] =
(m− 1)m

2(n− 1)
. (28)

But this is straightforward. Note that the number of the m-subsets of the set of all n rows that contain
some fixed rows of indices i1, i2 (i1 6= i2) is

(
n−2
m−2

)
. Thus for any fixed pair of rows of indices i

and n
2 + i the probability that these two rows will be selected is exactly psucc =

(n−2
m−2)
(n
m)

= (m−1)m
(n−1)n .

Equation 28 comes from the fact that clearly: E[r] = n
2 psucc. Thus we obtain the first term in

the min-expression from the statement of the lemma. The other one comes from the fact that one
can always do all the computations by calculating k times Walsh-Hadamard transformation. That
completes the proof.

8.5 Proof of Theorem 3.6

The proof of Theorem 3.6 follows a very similar structure to that of Theorem 3.3; we proceed by
induction, and may use the results of Proposition 8.3 to set up a recursion. We first show unbiasedness
of the estimator (Proposition 8.5), and then treat the base case of the inductive argument (Proposition
8.6). We prove slightly more general statements than needed for Theorem 3.6, as this will allow us to
explore the fully complex case in §8.7.
Proposition 8.5. The estimator KH,(k)

m (x,y) is unbiased for all k, n ∈ N, m ≤ n, and x,y ∈ Cn
with 〈x,y〉 ∈ R; in particular, for all x,y ∈ R.

Proof. Following a similar argument to the proof of Proposition 8.1, note that it is sufficient to prove
the claim for k = 1, since each SD block is unitary, and hence preserves the Hermitian product
〈x,y〉.

Next, note that the estimator can be written as a sum of identically distributed terms:

K̂H,(1)
m (x,y) =

n

m

m∑
i=1

Re
(
(SD1x)Ji × (SD1y)Ji

)
.

The terms are identically distributed since the index variables Ji are marginally identically dis-
tributed, and the rows of SD1 are marginally identically distributed (the elements of a row are iid
Unif(S1)/

√
n). Now note

E
[
Re
(
(SD1x)Ji × (SD1y)Ji

)]
=

1

n
E

[
n∑
i=1

yidi ×
n∑
i=1

xidi

]

=
1

n
E

[
n∑
i=1

xiyididi

]
+ E

∑
i 6=j

xiyjdidj

 =
1

n
〈x,y〉 ,

where di = Dii
iid∼ Unif(S1) for i = 1, . . . , n. This immediately yields E

[
K̂
H,(1)
m (x,y)

]
= 〈x,y〉,

as required.

We now derive the base case for our inductive proof, again proving a slightly more general statement
then necessary for Theorem 3.6.
Proposition 8.6. Let x,y ∈ Cn such that 〈x,y〉 ∈ R. The MSE of the single complex SD-block
m-feature estimator KH,(1)

m (x,y) for 〈x,y〉 is

MSE(K̂H,(1)
m (x,y)) =

1

2m

(
n−m
n− 1

)(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
r=1

|xr|2|yr|2 −
n∑
r=1

Re(x2
ry

2
r)

)
.
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Proof. The proof is very similar to that of Proposition 8.2. By the unbiasedness result of Proposition
8.5, the mean squared error of the estimator is simply the variance. We begin by conditioning on the
random index vector J selected by the sub-sampling procedure.

K̂H,(1)
m (x,y)) =

1

M
Re
(
〈
√
n(SD1x)J,

√
n(SDy)J〉

)
,

where again J is a set of uniform iid indices from 1, . . . , n, and the bar over D represents complex
conjugation. Since the estimator is again unbiased, its MSE is equal to its variance. First conditioning
on the index set J, as for Proposition 8.6, we obtain

Var
(
K̂H,(1)m (x, y)

)
=
n2

m2

(
E

[
Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)]

+Var

(
E

[
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
]))

.

Again, the second term vanishes as the conditional expectation is constant as a function of J, by
unitarity of SD. Turning attention to the conditional variance expression in the first term, we note

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lCov
(
Re(dixidjyj),Re(dkxkdlyl)

)
.

Now note that the covariance term is non-zero iff i, j are distinct, and {i, j} = {k, l}. We therefore
obtain

Var

(
Re

(
m∑
p=1

(SDx)Jp(SDy)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i 6=j

sJpisJpjsJp′ isJp′ j
(
Cov

(
Re(dixidjyj),Re(dixidjyj)

)
+Cov

(
Re(dixidjyj),Re(djxjdiyi)

))
First consider the term Cov

(
Re(dixidjyj),Re(dixidjyj)

)
. The random variable dixidjyj is dis-

tributed uniformly on the circle in the complex plane centered at the origin with radius |xiyj |.
Therefore the variance of its real part is

Cov
(
Re(dixidjyj),Re(dixidjyj)

)
=

1

2
|xiyj |2 =

1

2
xixiyjyj .

For the second covariance term, we perform an explicit calculation. Let Z = eiθ = didj . Then we
have

Cov
(
Re(dixidjyj),Re(djxjdiyi)

)
= Cov

(
Re(Zxiyj),Re(Zxjyi)

)
= Cov (cos(θ)Re(xiyj)− sin(θ)Im(xiyj), cos(θ)Re(xjyi) + sin(θ)Im(xjyi))

=
1

2
(Re(xiyj)Re(xjyi)− Im(xiyj)Im(xjyi)) ,

with the final equality following since the angle θ is uniformly distributed on [0, 2π], and standard
trigonometric integral identities. We recognize the bracketed terms in the final line as the real part of
the product xixjyiyj . Substituting these into the expression for the conditional variance obtained
above, we have

Var

(
Re

(
m∑
p=1

(SDx)Jp(SDy)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i6=j

sJpisJpjsJp′ isJp′ j
1

2

(
xixiyjyj +Re(xixjyiyj)

)
.

Now taking the expectation over the index variables J, we note that as in the proof of Proposition 8.2,
the expectation of the term sJpisJpjsJp′ isJp′ j is 1/n2 when p = p′, and 1/(n2(n− 1)) otherwise.
Therefore we obtain

Var
(
K̂H,(1)
m (x,y)

)
=

n2

m2

(m
n2

+
m(m− 1)

n2(n− 1)

)
1

2

n∑
i 6=j

(
xixiyjyj + Re(xixjyiyj)

)
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=
1

2m

(
n−m
n− 1

) n∑
i 6=j

(
xixiyjyj + Re(xixjyiyj)

)
=

1

2m

(
n−m
n− 1

) n∑
i,j=1

(
xixiyjyj + Re(xixjyiyj)

)
−

n∑
i=1

(xixiyiyi + Re(xixiyiyi))


=

1

2m

(
n−m
n− 1

)(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
i=1

(xixiyiyi + Re(xixiyiyi))

)
,

where in the final equality we have used the assumption that 〈x,y〉 ∈ R.

We are now in a position to prove Theorem 3.6 by induction, using Proposition 8.6 as a base case,
and Proposition 8.3 for the inductive step.

Proof of Theorem 3.6. Recall that we aim to establish the following general expression for k ≥ 1:

MSE(K̂H,(k)m (x,y)) =
1

2m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2)+

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2) + (−1)k2k

nk−1

n∑
i=1

x2i y
2
i

)
.

We proceed by induction. The case k = 1 is verified by Proposition 8.6, and by noting that in the
expression obtained in Proposition 8.6, we have

n∑
i=1

xixiyiyi = Re(xixiyiyi) =

n∑
i=1

x2
i y

2
i .

For the inductive step, suppose the result holds for some k ∈ N. Then observe by Proposition 8.3 and
the induction hypothesis, we have, for x,y ∈ Rn:

MSE(K̂H,(k+1)
m (x,y)) = E

[
MSE

(
K̂(k−1)
m (SD1x,SD1y)|D1

)]
=

1

2m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2) +

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2)

+
(−1)k2k

nk−1

n∑
i=1

E
[
(SD1x)2

i (SD1y)2
i

])
,

where we have used that SD1 is almost surely orthogonal, and therefore ‖SD1x‖2 = ‖x‖2 almost
surely, ‖SD1y‖2 = ‖y‖2 almost surely, and 〈SD1x,SD1y〉 = 〈x,y〉 almost surely. Applying
Lemma 8.4 to the remaining expectation and collecting terms yields the required expression for
MSE(K̂

H,(k+1)
m (x,y)), and the proof is complete.

8.6 Proof of Corollary 3.7

The proof follows simply by following the inductive strategy of the proof of Theorem 3.6, replacing
the base case in Proposition 8.6 with the following.
Proposition 8.7. Let x,y ∈ Rn. The MSE of the single hybrid SD-block m-feature estimator
K
H,(1)
m (x,y) using a diagonal matrix with entries Unif({1,−1, i,−i}), rather than Unif(S1) for
〈x,y〉 is

MSE(K̂H,(1)
m (x,y)) =

1

2m

(
〈x,x〉〈y,y〉+ 〈x,y〉2 − 2

n∑
r=1

x2
ry

2
r

)
.
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Proof. The proof of this proposition proceeds exactly as for Proposition 8.6; by following the same
chain of reasoning, conditioning on the index set J of the sub-sampled rows, we arrive at

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lCov
(
Re(dixidjyj),Re(dkxkdlyl)

)
.

Since we are dealing strictly with the case x,y ∈ Rn, we may simplify this further to obtain

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lxixkyiylCov
(
Re(didj),Re(dkdl)

)
.

By calculating directly with the di, dj , dk, dl ∼ Unif({1,−1, i,−i}), we obtain

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

1

2

m∑
p,p′=1

n∑
i 6=j

sJpisJpjsJp′ksJp′ l(x
2
i y

2
j + xixjyiyj) ,

exactly as in Proposition 8.6; following the rest of the argument of Proposition 8.6 yields the
result.

The proof of the corollary now follows by applying the steps of the proof of Theorem 3.6.

8.7 Exploring Dimensionality Reduction with Fully-complex Random Matrices

In this section, we briefly explore the possibility of using SD-product matrices in which all the
random diagonal matrices are complex-valued. Following on from the ROMs introduced in Definition
2.1, we define the S-Uniform random matrix with k ∈ N blocks to be given by

M
(k)
SU =

k∏
i=1

SD
(U)
i ,

where (D
(U)
i )ki=1 are iid diagonal matrices with iid Unif(S1) random variables on the diagonals, and

S1 is the unit circle of C.

As alluded to in §3, we will see that introducing this increased number of complex parameters
does not lead to significant increases in statistical performance relative to the estimator K̂H,(k)

m for
dimensionality reduction.

We consider the estimator K̂U,(k)
m below, based on the sub-sampled SD-product matrix M

(k),sub
SU :

K̂U,(k)
m (x,y) =

1

m
Re

[(
M

(k),sub
SU x

)> (
M

(k),sub
SU y

)]
,

and show that it does not yield a significant improvement over the estimator K̂H,(k)
m of Theorem 3.6:

Theorem 8.8. For x,y ∈ Rn, the estimator K̂U,(k)
m (x,y), applying random sub-sampling strategy

without replacement is unbiased and satisfies:

MSE(K̂U,(k)m (x,y))=

1

2m

(
n−m
n− 1

)((
(x>y)2+‖x‖2‖y‖2

)
+

k−1∑
r=1

(−1)r

nr
(3(x>y)2 + ‖x‖2‖y‖2) + (−1)k2

nk−1

n∑
i=1

x2i y
2
i

)
.
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The structure of the proof of Theorem 8.8 is broadly the same as that of Theorem 3.3. We begin
by remarking that the proof that the estimator is unbiased is exactly the same as that of Proposition
8.5. We then note that in the case of k = 1 block, the estimators K̂H,(1)

m and K̂U,(1)
m , coincide so

Proposition 8.6 establishes the MSE of the estimator K̂U,(k)
m in the base case k = 1. We then obtain a

recursion formula for the MSE (Proposition 8.9), and finally prove the theorem by induction.
Proposition 8.9. Let k ≥ 2, n ∈ N, m ≤ n, and x,y ∈ Cn such that 〈x,y〉 ∈ R; in particular, this
includes x,y ∈ Rn. Then we have the following recursion for the MSE of K̂U,(k)

M (x,y):

MSE(K̂U,(k)
m (x,y)) = E

[
MSE(K̂U,(k−1)

m (SD1x,SD1y)
∣∣D1)

]
Proof. The proof is exactly analogous to that of Proposition 8.3, and is therefore omitted.

Before we complete the proof by induction, we will need the following auxiliary result, to deal with
the expectations that arise during the recursion due to the terms in the MSE expression of Proposition
8.6.
Lemma 8.10. Under the assumptions of Theorem 8.8, we have the following expectations:

E
[
|(SDx)r|2|(SDy)r|2

]
=

1

n2

(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
i=1

|xi|2|yi|2
)

E
[
Re((SDx)2

r(SDy)2
r)
]

=
1

n2

(
2〈x,y〉2 −

n∑
i=1

Re(x2
i y

2
i )

)

Proof. For the first claim, we note that

E
[
|(SDx)r|2|(SDy)r|2

]
=

n∑
i,j,k,l

srisrjsrksrlxixjykylE
[
didjdkdl

]

=
1

n2

∑
i6=j

xixiyjyj +
∑
i6=j

xixjyjyi +

n∑
i=1

xixiyiyi


=

1

n2

 n∑
i,j=1

xixiyjyj +

n∑
i,j=1

xixjyjyi −
n∑
i=1

xixiyiyi


=

1

n2

(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
i=1

|xi|2|yi|2
)
,

as required, where in the final equality we have use the assumption that 〈x,y〉 ∈ R. For the second
claim, we observe that

E
[
Re((SDx)2

r(SDy)2
r

]
=Re

 n∑
i,j,k,l

srisrjsrksrlxixjykylE
[
didjdkdl

]
=Re

 1

n2

2
∑
i6=j

xixjyiyj +

n∑
i=1

xixiyiyi


=

1

n2

(
2〈x,y〉2 −

n∑
i=1

Re
(
x2
i y

2
i

))
,

where again we have used the assumption that 〈x,y〉 ∈ R.

Proof of Theorem 8.8. The proof now proceeds by induction. We in fact prove the stronger result
that for any x,y ∈ Cn for which 〈x,y〉 ∈ R, we have

MSE(K̂U,(k)m (x,y))=
1

2m

(
n−m
n− 1

)((
〈x,y〉2+〈x,x〉〈y,y〉

)
+

k−1∑
r=1

(−1)r

nr
(3〈x,y〉2+〈x,x〉〈y,y〉)+
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(−1)k

nk−1

(
n∑
i=1

(
|xi|2|yi|2 +Re

(
x2i y

2
i

))))
.

from which Theorem 8.8 clearly follows. Proposition 8.6 yields the base case k = 1 for this claim.
For the recursive step, suppose that the result holds for some number k ∈ N of blocks. Recalling the
recursion of Proposition 8.9, we then obtain

MSE(K̂U,(k+1)
m (x,y))=

1

2m

(
n−m
n− 1

)((
〈x,y〉2+〈x,x〉〈y,y〉

)
+

k−1∑
r=1

(−1)r

nr
(3〈x,y〉2+〈x,x〉〈y,y〉)+

(−1)k

nk−1

(
n∑
i=1

(
E
[
|SD1x|2i |SD1y|2i

]
+ E

[
Re
(
(SD1x)

2
i (SD1y)

2
i

)])))
,

where we have used the fact that SD1 is a unitary isometry almost surely, and thus preserves
Hermitian products. Applying Lemma 8.10 to the remaining expectations and collecting terms proves
the inductive step, which concludes the proof of the theorem.

8.8 Proof of Theorem 3.8

Proof. The proof of this result is reasonably straightforward with the proofs of Theorems 3.3 and 3.6
in hand; we simply recognize where in these proofs the assumption of the sampling strategy without
replacement was used. We deal first with Theorem 3.3, which deals with the MSE associated with
K̂

(k)
m (x,y). The only place in which the assumption of the sub-sampling strategy without replacement

is used is mid-way through the proof of Proposition 8.2, which quantifies MSE(K̂
(1)
m (x,y)). Picking

up the proof at the point the sub-sampling strategy is used, we have

MSE(K̂(1)
m (x,y)) =

n2

m2

m∑
p,p′=1

n∑
i6=j

(
x2
i y

2
j + xixjyiyj

)
E
[
sJpisJpjsJp′ isJp′ j

]
.

Now instead using sub-sampling strategy with replacement, note that each pair of sub-sampled indices
Jp and Jp′ are independent. Recalling that the columns of S are orthogonal, we obtain for distinct p
and p′ that

E
[
sJpisJpjsJp′ isJp′ j

]
= E

[
sJpisJpj

]
E
[
sJp′ isJp′ j

]
= 0 .

Again, for p = p′, we have E
[
sJpisJpjsJp′ isJp′ j

]
= 1/n2. Substituting the values of these

expectations back into the expression for the MSE of K̂(k)
m (x,y) then yields

MSE(K̂(1)
m (x,y)) =

n2

m2

n∑
i 6=j

(
x2
i y

2
j + xixjyiyj

)(
m× 1

n2

)

=
1

m

(
1− m− 1

n− 1

) n∑
i6=j

(
x2
i y

2
j + xixjyiyj

)
=

1

m

(
〈x,y〉2 + ‖x‖2‖y‖2 − 2

n∑
i=1

x2
i y

2
i

)
as required.

For the estimator K̂H,(k)
m (x,y), the result also immediately follows with the above calculation, as

the only point in the proof of the MSE expressions for these estimators that is influenced by the
sub-sampling strategy is in the calculation of the quantities E

[
sJpisJpjsJp′ isJp′ j

]
; therefore, exactly

the same multiplicative factor is incurred for MSE as for K̂(k)
m (x,y).

9 Proofs of results in §4

9.1 Proof of Lemma 4.2

Proof. Follows immediately from the proof of Theorem 4.4 (see: the proof below).
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9.2 Proof of Theorem 4.3

Recall that the angular kernel estimator based on Gort is given by

K̂ang,ort
m (x,y) =

1

m
sign(Gortx)>sign(Gorty)

where the function sign acts on vectors element-wise. In what follows, we write Gi
ort for the ith row

of Gort, and Gi for the ith row of G.

Since each Gi
ort has the same marginal distribution as Rm in the unstructured Gaussian case covered

by Theorem 4.4, unbiasedness of K̂ang,ort(x, y) follows immediately from this result, and so we
obtain:
Lemma 9.1. K̂ang,ort

m (x,y) is an unbiased estimator of Kang(x,y).

We now turn our attention to the variance of K̂ang,ort
m (x,y).

Theorem 9.2. The variance of the estimator K̂ang,ort
m (x, y) is strictly smaller than the variance of

K̂ang, base
m (x,y)

Proof. Denote by θ the angle between x and y, and for notational ease, let Si =
sign

(〈
Gi,x

〉)
sign

(〈
Gi,y

〉)
, and Sort

i = sign
(〈
Gi

ort,x
〉)

sign
(〈
Gi

ort,y
〉)

. Now observe that as
K̂ang,ort
m (x,y) is unbiased, we have

Var
(
K̂ang,ort
m (x,y)

)
= Var

(
1

m

m∑
i=1

Sort
i

)

=
1

m2

 m∑
i=1

Var
(
Sort
i

)
+

m∑
i 6=i′

Cov
(
Sort
i , Sort

i′
) .

By a similar argument, we have

Var
(
K̂base
m (x,y)

)
=

1

m2

 m∑
i=1

Var (Si) +

m∑
i6=i′

Cov (Si, Si′)

 . (29)

Note that the covariance terms in (29) evaluate to 0, by independence of Si and Si′ for i 6= i′ (which
is inherited from the independence of Gi and Gi′ ). Also observe that since Gi d= Gi

ort, we have

Var
(
Sort
i

)
= Var (Si) .

Therefore, demonstrating the theorem is equivalent to showing, for i 6= i′, that

Cov
(
Sort
i , Sort

i′
)
< 0 ,

which is itself equivalent to showing

E
[
Sort
i Sort

i′
]
< E

[
Sort
i

]
E
[
Sort
i′
]
. (30)

Note that the variables (Sort
i )mi=1 take values in {±1}. DenotingAi = {Sort

i = −1} for i = 1, . . . ,m,
we can rewrite (30) as

P [Aci ∩ Aci′ ] + P [Ai ∩ Ai′ ]− P [Ai ∩ Aci′ ]− P [Aci ∩ Ai′ ] <
(
π − 2θ

π

)2

.

Note that the left-hand side is equal to

2(P [Aci ∩ Aci′ ] + P [Ai ∩ Ai′ ])− 1 .

Plugging in the bounds of Proposition 9.3, and using the fact that the pair of indicators (1Ai
,1Ai′ ) is

identically distributed for all pairs of distinct indices i, i′ ∈ {1, . . . ,m}, thus yields the result.
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Proposition 9.3. We then have the following inequalities:

P [A1 ∩ A2] <

(
θ

π

)2

and P [Ac1 ∩ Ac2] <

(
1− θ

π

)2

Before providing the proof of this proposition, we describe some coordinate choices we will make in
order to obtain the bounds in Proposition 9.3.

We pick an orthonormal basis for Rn so that the first two coordinates span the x-y plane, and
further so that (G1

ort)2, the coordinate of G1
ort in the second dimension, is 0. We extend this to an

orthonormal basis of Rn so that (G1
ort)3 ≥ 0, and (G1

ort)i = 0 for i ≥ 4. Thus, in this basis, we
have coordinates

G1
ort = ((G1

ort)1, 0, (G
1
ort)3, 0, . . . , 0) ,

with (G1
ort)1 ∼ χ2 and (G1

ort)3 ∼ χN−2 (by elementary calculations with multivariate Gaus-
sian distributions). Note that the angle, φ, that G1

ort makes with the x-y plane is then φ =
arctan((G1

ort)3/(G
1
ort)1). Having fixed our coordinate system relative to the random variable

G1
ort, the coordinates of x and y in this frame are now themselves random variables; we introduce

the angle ψ to describe the angle between x and the positive first coordinate axis in this basis.

Now consider G2
ort. We are concerned with the direction of ((G2

ort)1, (G
2
ort)2) in the x-y plane.

Conditional on G1
ort, the direction of the full vector G2

ort is distributed uniformly on Sn−2(〈G1
ort〉⊥),

the set of unit vectors orthogonal to G1
ort. Because of our particular choice of coordinates, we can

therefore write

G2
ort = (r sin(φ), (G2

ort)2, r cos(φ), (G2
ort)4, (G

2
ort)5, . . . , (G

2
ort)n) ,

where the (N − 1)-dimensional vector (r, (G2
ort)2, (G

2
ort)4, (G

2
ort)5, . . . , (G

2
ort)n) has an isotropic

distribution.

So the direction of ((G2
ort)1, (G

2
ort)2) in the x-y plane follows an angular Gaussian distribution,

with covariance matrix (
sin2(φ) 0

0 1

)
.

With these geometrical considerations in place, we are ready to give the proof of Proposition 9.3.

Proof of Proposition 9.3. Dealing with the first inequality, we decompose the event as

A1 ∩ A2 ={
〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0}

∪ {
〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
< 0,

〈
G2

ort,y
〉
> 0}

∪ {
〈
G1

ort,x
〉
< 0,

〈
G1

ort,y
〉
> 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0}

∪ {
〈
G1

ort,x
〉
< 0,

〈
G1

ort,y
〉
> 0,

〈
G2

ort,x
〉
< 0,

〈
G2

ort,y
〉
> 0} .

As the law of (G1
ort,G

2
ort) is the same as that of (G2

ort,G
1
ort) and that of (−G1

ort,G
2
ort), it follows

that all four events in the above expression have the same probability. The statement of the theorem
is therefore equivalent to demonstrating the following inequality:

P
[〈
G1

ort, x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]
<

(
θ

2π

)2

.

We now proceed according to the coordinate choices described above. We first condition on the
random angles φ and ψ to obtain

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ 2π

0

dψ

2π

∫ π/2

0

f(φ)dφ P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
=

∫ 2π

0

dψ

2π

∫ π/2

0

f(φ)dφ 1{0∈[ψ−π/2,ψ−π/2+θ]}P
[〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
,

25



where f is the density of the random angle φ. The final equality above follows as G1
ort and G2

ort are
independent conditional on ψ and φ, and since the event {

〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0} is exactly

the event {0 ∈ [ψ − π/2, ψ − π/2 + θ]}, by considering the geometry of the situation in the x-y
plane. We can remove the indicator function from the integrand by adjusting the limits of integration,
obtaining

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ P
[〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
.

We now turn our attention to the conditional probability

P
[〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
.

The event {
〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0} is equivalent to the angle t of the projection of G2

ort into
the x-y plane with the first coordinate axis lying in the interval [ψ − π/2, ψ − π/2 + θ]. Recalling
the distribution of the angle t from the geometric considerations described immediately before this
proof, we obtain

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ

∫ ψ−π/2+θ

ψ−π/2
(2π sin(φ))−1(cos2(t)/ sin2(φ) + sin2(t))−1dt .

With θ ∈ [0, π/2], we note that the integral with respect to t can be evaluated analytically, leading us
to

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ
1

2π
(arctan(tan(ψ − π/2 + θ) sin(φ))− arctan(tan(ψ − π/2) sin(φ)))

≤
∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ
θ

2π

=

(
θ

2π

)2

.

To deal with θ ∈ [π/2, π], we note that if the angle θ between x and y is obtuse, then the
angle between x and −y is π − θ and therefore acute. Recalling from our definition that
Am = {sign

(〈
Gi

ort,x
〉)

sign
(〈
Gi

ort,y
〉)

= −1}, if we denote the corresponding quantity for
the pair of vecors x, −y by Ām = {sign

(〈
Gi

ort,x
〉)

sign
(〈
Gi

ort,−y
〉)

= −1}, then we in fact
have Ām = Acm. Therefore, applying the result to the pair of vectors x and −y (which have acute
angle π − θ between them) and using the inclusion-exclusion principle, we obtain:

P(A1 ∩ A2) = 1− P(Ac1)− P(Ac2) + P(Ac1 ∩ Ac2)

< 1− P(Ac1)− P(Ac2) +

(
π − θ
π

)2

= 1− 2

(
π − θ
π

)
+

(
π − θ
π

)2

=

(
θ

π

)2

as required.

The second inequality of Proposition 9.3 follows from the inclusion-exclusion principle and the first
inequality:

P [Ac1 ∩ Ac2] = 1− P [A1]− P [A2] + P [A1 ∩ A2]

< 1− P [A1]− P [A2] +

(
θ

π

)2
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= (1− P [A1])(1− P [A2])

=

(
1− θ

π

)2

.

9.3 Proof of Theorem 4.4

Proof. We will consider the following setting. Given two vectors x,y ∈ Rn, each of them is
transformed by the nonlinear mapping: φM : z→ 1√

k
sgn(Mz), where M ∈ Rm×n is some linear

transformation and sgn(v) stands for a vector obtained from v by applying pointwise nonlinear
mapping sgn : R → R defined as follows: sgn(x) = +1 if x > 0 and sgn(x) = −1 otherwise.
The angular distance θ between x and y is estimated by: θ̂M = π

2 (1 − φM(x)>φM(y)). We will
derive the formula for the MSE(θ̂M(x,y)). One can easily see that the MSE of the considered in
the statement of the theorem angular kernel on vectors x and y can be obtained from this one by
multiplying by 4

π2 .

Denote by ri the ith row of M. Notice first that for any two vectors x,y ∈ Rn with angular distance
θ, the event Ei = {sgn((ri)>x) 6= sgn((ri)>y)} is equivalent to the event {riproj ∈ R}, where
riproj stands for the projection of ri into the x− y plane and R is a union of two cones in the x-y
plane obtained by rotating vectors x and y by π

2 . Denote Ai = {riproj ∈ R} for i = 1, ..., k and
δi,j = P[Ai ∩ Aj ]− P[Ai]P[Aj ].

For a warmup, let us start our analysis for the standard unstructured Gaussian estimator case. It is a
well known fact that this is an unbiased estimator of θ. Thus

MSE(θ̂G(x,y)) = V ar(
π

2
(1− φM(x)>φM(y))) =

π2

4
V ar(φM(x)>φM(y)))

=
π2

4

1

m2
V ar(

m∑
i=1

Xi),
(31)

where Xi = sgn((ri)>x)sgn((ri)>y).

Since the rows of G are independent, we get

V ar(
m∑
i=1

Xi) =
m∑
i=1

V ar(Xi) =
m∑
i=1

(E[X2
i ]− E[Xi]

2). (32)

From the unbiasedness of the estimator, we have: E[Xi] = (−1) · θπ + 1 · (1− θ
π ). Thus we get:

MSE(θ̂G(x,y)) =
π2

4

1

m2

m∑
i=1

(1− (1− 2θ

π
)2) =

θ(π − θ)
m

. (33)

Multiplying by 4
π2 , we obtain the proof of Lemma 4.2.

Now let us switch to the general case. We first compute the variance of the general estimator E using
matrices M (note that in this setting we do not assume that the estimator is necessarily unbiased).

By the same analysis as before, we get:

V ar(E) = V ar(
π

2
(1− φ(x)>φ(y))) =

π2

4
V ar(φ(x)>φ(y))) =

π2

4

1

m2
V ar(

m∑
i=1

Xi), (34)
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This time however different Xis are not uncorrelated. We get

V ar(

m∑
i=1

Xi) =

m∑
i=1

V ar(Xi) +
∑
i 6=j

Cov(Xi, Xj) =

m∑
i=1

E[X2
i ]−

m∑
i=1

E[Xi]
2 +

∑
i 6=j

E[XiXj ]−
∑
i 6=j

E[Xi]E[Xj ] =

m+
∑
i 6=j

E[XiXj ]−
∑
i,j

E[Xi]E[Xj ]

(35)

Now, notice that from our previous observations and the definition of Ai, we have

E[Xi] = −P[Ai] + P[Aic], (36)

where Aic stands for the complement of Ai.
By the similar analysis, we also get:

E[XiXj ] = P[Ai ∩ Aj ] + P[Aic ∩ Ajc]− P[Aic ∩ Aj ]− P[Ai ∩ Ajc] (37)

Thus we obtain

V ar(

m∑
i=1

Xi) = m+
∑
i 6=j

(P[Ai ∩ Aj ] + P[Aic ∩ Ajc]− P[Aic ∩ Aj ]− P[Ai ∩ Ajc]

−(P[Aic]− P[Ai])(P[Ajc]− P[Aj ]))

−
∑
i

(P[Aic]− P[Ai])2 = m−
∑
i

(1− 2P[Ai])2

+
∑
i6=j

(P[Ai ∩ Aj ] + P[Aic ∩ Ajc]− P[Aic ∩ Aj ]− P[Ai ∩ Ajc]+

P[Aic]P[Aj ] + P[Ai]P[Ajc]− P[Aic]P[Ajc]− P[Ai]P[Aj ])

= m−
∑
i

(1− 2P[Ai])2 +
∑
i 6=j

(δ1(i, j) + δ2(i, j) + δ3(i, j) + δ4(i, j)),

(38)

where

• δ1(i, j) = P[Ai ∩ Aj ]− P[Ai]P[Aj ],
• δ2(i, j) = P[Aic ∩ Ajc]− P[Aic]P[Ajc],
• δ3(i, j) = P[Aic]P[Aj ]− P[Aic ∩ Aj ],
• δ4(i, j) = P[Ai]P[Ajc]− P[Ai ∩ Ajc].

Now note that
−δ4(i, j) = P[Ai]− P[Ai ∩ Aj ]− P[Ai]P[Ajc]

= P[Ai]− P[Ai](1− P[Aj ])− P[Ai ∩ Aj ]
= P[Ai]P[Aj ]− P[Ai ∩ Aj ] = −δ1(i, j)

(39)

Thus we have δ4(i, j) = δ1(i, j). Similarly, δ3(i, j) = δ1(i, j). Notice also that

−δ2(i, j) = (1− P[Ai])(1− P[Aj ])− (P[Aic]− P[Aic ∩ Aj ])
= 1− P[Ai]− P[Aj ] + P[Ai]P[Aj ]− 1 + P[Ai] + P[Aic ∩ Aj ]

= P[Ai]P[Aj ]− P[Ai ∩ Aj ] = −δ1(i, j),

(40)

therefore δ2(i, j) = δ1(i, j).

Thus, if we denote δi,j = δ1(i, j) = P[Ai ∩ Aj ]− P[Ai]P[Aj ], then we get

V ar(

m∑
i=1

Xi) = m−
∑
i

(1− 2P[Ai])2 + 4
∑
i 6=j

δi,j . (41)
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Thus we obtain

V ar(E) =
π2

4m2
[m−

∑
i

(1− 2P[Ai])2 + 4
∑
i 6=j

δi,j ]. (42)

Note that V ar(E) = E[(E − E[E ])2]. We have:

MSE(θ̂M(x,y)) = E[(E − θ)2] = E[(E − E[E ])2] + E[(E − θ)2]− E[(E − E[E ])2]

= V ar(E) + E[(E − θ)2 − (E − E[E ])2]

= V ar(E) + (E[E ]− θ)2

(43)

Notice that E = π
2 (1− 1

m

∑m
i=1Xi). Thus we get:

MSE(θ̂M(x,y)) =
π2

4m2
[m−

∑
i

(1− 2P[Ai])2 + 4
∑
i 6=j

δi,j ] +
π2

m2

∑
i

(P(Ai)− θ

π
)2. (44)

Now it remains to multiply the expression above by 4
π2 and that completes the proof.

Remark 9.4. Notice that if P(Ai) = θ
π (this is the case for the standard unstructured estimator as

well as for the considered by us estimator using orthogonalized version of Gaussian vectors) and if
rows of matrix M are independent then the general formula for MSE for the estimator of an angle
reduces to (π−θ)θ

m . If the first property is satisfied but the rows are not necessarily independent (as
it is the case for the estimator using orthogonalized version of Gaussian vectors) then whether the
MSE is larger or smaller than for the standard unstructured case is determined by the sign of the
sum

∑
i6=j δi,j . For the estimator using orthogonalized version of Gaussian vectors we have already

showed that for every i 6= j we have: δi,j > 0 thus we obtain estimator with smaller MSE. If M is a
product of blocks HD then we both have: an estimator with dependent rows and with bias. In that
case it is also easy to see that P(Ai) does not depend on the choice of i. Thus there exists some ε
such that ε = P(Ai)− θ

π . Thus the estimator based on the HD blocks gives smaller MSE iff:∑
i6=j

δi,j +mε2 < 0.

10 Further comparison of variants of OJLT based on SD-product matrices

In this section we give details of further experiments complementing the theoretical results of the
main paper. In particular, we explore the various parameters associated with the SD-product matrices
introduced in §2. In all cases, as in the experiments of §6, we take the structured matrix S to be the
normalized Hadamard matrix H. All experiments presented in this section measure the MSE of the
OJLT inner product estimator for two randomly selected data points in the g50c data set. The MSE
figures are estimated on the basis of 1, 000 repetitions. All results are displayed in Figure 3.
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(a) Comparison of estimators based on S-
Rademacher matrices with a varying number
of SD matrix blocks, using the with replace-
ment sub-sampling strategy.

(b) Comparison of estimators based on S-
Rademacher matrices with a varying number
of SD matrix blocks, using the sub-sampling
strategy without replacement.

(c) Comparison of the use of M(3)
SR, M(3)

SH,
and M

(3)
SU (introduced in §8.7) for dimension-

ality reduction. All use sub-sampling without
replacement. The curves corresponding to the
latter two random matrices are indistinguish-
able.

Figure 3: Results of experiments comparing OJLTs for a variety of SD-matrices.
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