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Abstract

It was recently proved using graph covers (Ruozzi, 2012) that the Bethe partition
function is upper bounded by the true partition function for a binary pairwise
model that is attractive. Here we provide a new, arguably simpler proof from
first principles. We make use of the idea of clamping a variable to a particular
value. For an attractive model, we show that summing over the Bethe partition
functions for each sub-model obtained after clamping any variable can only raise
(and hence improve) the approximation. In fact, we derive a stronger result that
may have other useful implications. Repeatedly clamping until we obtain a model
with no cycles, where the Bethe approximation is exact, yields the result. We also
provide a related lower bound on a broad class of approximate partition functions
of general pairwise multi-label models that depends only on the topology. We
demonstrate that clamping a few wisely chosen variables can be of practical value
by dramatically reducing approximation error.

1 Introduction

Marginal inference and estimating the partition function for undirected graphical models, also called
Markov random fields (MRFs), are fundamental problems in machine learning. Exact solutions may
be obtained via variable elimination or the junction tree method, but unless the treewidth is bounded,
this can take exponential time (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Wainwright and
Jordan, 2008). Hence, many approximate methods have been developed.

Of particular note is the Bethe approximation, which is widely used via the loopy belief propagation
algorithm (LBP). Though this is typically fast and results are often accurate, in general it may
converge only to a local optimum of the Bethe free energy, or may not converge at all (McEliece
et al., 1998; Murphy et al., 1999). Another drawback is that, until recently, there were no guarantees
on whether the returned approximation to the partition function was higher or lower than the true
value. Both aspects are in contrast to methods such as the tree-reweighted approximation (TRW,
Wainwright et al., 2005), which features a convex free energy and is guaranteed to return an upper
bound on the true partition function. Nevertheless, empirically, LBP or convergent implementations
of the Bethe approximation often outperform other methods (Meshi et al., 2009; Weller et al., 2014).

Using the method of graph covers (Vontobel, 2013), Ruozzi (2012) recently proved that the optimum
Bethe partition function provides a lower bound for the true value, i.e. ZB ≤ Z, for discrete binary
MRFs with submodular log potential cost functions of any order. Here we provide an alternative
proof for attractive binary pairwise models. Our proof does not rely on any methods of loop series
(Sudderth et al., 2007) or graph covers, but rather builds on fundamental properties of the derivatives
of the Bethe free energy. Our approach applies only to pairwise models (whereas Ruozzi, 2012
applies to any order), but we obtain stronger results for this class, from which ZB ≤ Z easily
follows. We use the idea of clamping a variable and considering the approximate sub-partition
functions over the remaining variables, as the clamped variable takes each of its possible values.

Notation and preliminaries are presented in §2. In §3, we derive a lower bound, not just for the
standard Bethe partition function, but for a range of approximate partition functions over multi-label
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variables that may be defined from a variational perspective as an optimization problem, based only
on the topology of the model. In §4, we consider the Bethe approximation for attractive binary pair-
wise models. We show that clamping any variable and summing the Bethe sub-partition functions
over the remaining variables can only increase (hence improve) the approximation. Together with a
similar argument to that used in §3, this proves that ZB ≤ Z for this class of model. To derive the
result, we analyze how the optimum of the Bethe free energy varies as the singleton marginal of one
particular variable is fixed to different values in [0, 1]. Remarkably, we show that the negative of this
optimum, less the singleton entropy of the variable, is a convex function of the singleton marginal.
This may have further interesting implications. We present experiments in §5, demonstrating that
clamping even a single variable selected using a simple heuristic can be very beneficial.

1.1 Related work

Branching or conditioning on a variable (or set of variables) and approximating over the remaining
variables has a fruitful history in algorithms such as branch-and-cut (Padberg and Rinaldi, 1991;
Mitchell, 2002), work on resolution versus search (Rish and Dechter, 2000) and various approaches
of (Darwiche, 2009, Chapter 8). Cutset conditioning was discussed by Pearl (1988) and refined by
Peot and Shachter (1991) as a method to render the remaining topology acyclic in preparation for be-
lief propagation. Eaton and Ghahramani (2009) developed this further, introducing the conditioned
belief propagation algorithm together with back-belief-propagation as a way to help identify which
variables to clamp. Liu et al. (2012) discussed feedback message passing for inference in Gaussian
(not discrete) models, deriving strong results for the particular class of attractive models. Choi and
Darwiche (2008) examined methods to approximate the partition function by deleting edges.

2 Preliminaries

We consider a pairwise model with n variables X1, . . . , Xn and graph topology (V, E): V contains
nodes {1, . . . , n} where i corresponds to Xi, and E ⊆ V × V contains an edge for each pairwise
relationship. We sometimes consider multi-label models where each variable Xi takes values in
{0, . . . , Li − 1}, and sometimes restrict attention to binary models where Xi ∈ B = {0, 1} ∀i.
Let x = (x1, . . . , xn) be a configuration of all the variables, and N (i) be the neighbors of i. For
all analysis of binary models, to be consistent with Welling and Teh (2001) and Weller and Jebara
(2013), we assume a reparameterization such that p(x) = e−E(x)

Z , where the energy of a configura-
tion, E = −

∑
i∈V θixi −

∑
(i,j)∈EWijxixj , with singleton potentials θi and edge weights Wij .

2.1 Clamping a variable and related definitions

We shall find it useful to examine sub-partition functions obtained by clamping one particular vari-
able Xi, that is we consider the model on the n−1 variables X1, . . . , Xi−1, Xi+1, . . . , Xn obtained
by setting Xi equal to one of its possible values.

Let Z|Xi=a be the sub-partition function on the model obtained by settingXi = a, a ∈ {0, . . . , Li−
1}. Observe that true partition functions and marginals are self-consistent in the following sense:

Z =

Li−1∑
j=0

Z|Xi=j ∀i ∈ V, p(Xi = a) =
Z|Xi=a∑Li−1
j=0 Z|Xi=j

. (1)

This is not true in general for approximate forms of inference,1 but if the model has no cycles, then
in many cases of interest, (1) does hold, motivating the following definition.
Definition 1. We say an approximation to the log-partition function ZA is ExactOnTrees if it may be
specified by the variational formula− logZA = minq∈Q FA(q) where: (1)Q is some compact space
that includes the marginal polytope; (2) FA is a function of the (pseudo-)distribution q (typically a
free energy approximation); and (3) For any model, whenever a subset of variables V ′ ⊆ V is
clamped to particular values P = {pi ∈ {0, . . . , Li − 1}, ∀Xi ∈ V ′}, i.e. ∀Xi ∈ V ′, we constrain
Xi = pi, which we write as V ′ ← P , and the remaining induced graph on V \V ′ is acyclic, then the

1For example, consider a single cycle with positive edge weights. This has ZB < Z (Weller et al., 2014),
yet after clamping any variable, each resulting sub-model is a tree hence the Bethe approximation is exact.
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approximation is exact, i.e. ZA|V′←P = Z|V′←P . Similarly, define an approximation to be in the
broader class of NotSmallerOnTrees if it satisfies all of the above properties except that condition
(3) is relaxed to ZA|V′←P ≥ Z|V′←P . Note that the Bethe approximation is ExactOnTrees, and
approximations such as TRW are NotSmallerOnTrees, in both cases whether using the marginal
polytope or relaxations thereof, such as the cycle or local polytope (Weller et al., 2014).

We shall derive bounds on ZA with the following idea: (i) Obtain upper or lower bounds on the
approximation achieved by clamping and summing over the approximate sub-partition functions;
(ii) Repeat until an acyclic graph is reached, where the approximation is either exact or bounded.
We introduce the following related concept from graph theory.

Definition 2. A feedback vertex set (FVS) of a graph is a set of vertices whose removal leaves a
graph without cycles. Determining if there exists a feedback vertex set of a given size is a classical
NP-hard problem (Karp, 1972). There is a significant literature on determining the minimum cardi-
nality of an FVS of a graphG, which we write as ν(G). Further, if vertices are assigned non-negative
weights, then a natural problem is to find an FVS with minimum weight, which we write as νw(G).
An FVS with a factor 2 approximation to νw(G) may be found in time O(|V| + |E| log |E|) (Bafna
et al., 1999). For pairwise multi-label MRFs, we may create a weighted graph from the topology by
assigning each node i a weight of logLi, and then compute the corresponding νw(G).

3 Lower Bound on Approximate Partition Functions

We obtain a lower bound on any approximation that is NotSmallerOnTrees by observing that ZA ≥
ZA|Xn=j ∀j from the definition (the sub-partition functions optimize over a subset).

Theorem 3. If a pairwise MRF has topology with an FVS of size k and corresponding values
L1, . . . , Lk, then for any approximation that is NotSmallerOnTrees, ZA ≥ Z∏k

i=1 Li
.

Proof. We proceed by induction on k. The base case k = 0 holds by the assumption thatZA is NotS-
mallerOnTrees. Now assume the result holds for k−1 and consider a MRF which requires k vertices
to be deleted to become acyclic. Clamp variable Xk at each of its Lk values to create the approx-
imation Z(k)

A :=
∑Lk−1
j=0 ZA|Xk=j . By the definition of NotSmallerOnTrees, ZA ≥ ZA|Xk=j ∀j;

and by the inductive hypothesis, ZA|Xk=j ≥
Z|Xk=j∏k−1

i=1 Li
.

Hence, LkZA ≥ Z(k)
A =

∑Lk−1
j=0 ZA|Xk=j ≥ 1∏k−1

i=1 Li

∑Lk−1
j=0 Z|Xk=j = Z∏k−1

i=1 Li
.

By considering an FVS with minimum
∏k
i=1 Li, Theorem 3 is equivalent to the following result.

Theorem 4. For any approximation that is NotSmallerOnTrees, ZA ≥ Ze−νw .

This bound applies to general multi-label models with any pairwise and singleton potentials (no
need for attractive). The bound is trivial for a tree, but already for a binary model with one cycle we
obtain that ZB ≥ Z/2 for any potentials, even over the marginal polytope. The bound is tight, at
least for uniform Li = L ∀i.2 The bound depends only on the vertices that must be deleted to yield
a graph with no cycles, not on the number of cycles (which clearly upper bounds ν(G)). For binary
models, exact inference takes time Θ((|V| − |ν(G)|)2ν(G)). Note that treewidth ≤ ν + 1.

4 Attractive Binary Pairwise Models

In this Section, we restrict attention to the standard Bethe approximation. We shall use results
derived in (Welling and Teh, 2001) and (Weller and Jebara, 2013), and adopt similar notation. The
Bethe partition function, ZB , is defined as in Definition 1, where Q is set as the local polytope
relaxation and FA is the Bethe free energy, given by F(q) = Eq(E)−SB(q), where E is the energy

2Given ν, we can construct a model such that the bound is tight. For example, in the binary case: consider
a sub-MRF on a cycle with no singleton potentials and uniform, very high attractive edge weights. This can be
shown to have ZB ≈ Z/2 (Weller et al., 2014). Now connect ν of these together in a chain using very weak
edges (this construction is due to N. Ruozzi).
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and SB is the Bethe pairwise entropy approximation (see Wainwright and Jordan, 2008 for details).
We consider attractive binary pairwise models and apply similar clamping ideas to those used in §3.
In §4.1 we show that clamping can never decrease the approximate Bethe partition function, then
use this result in §4.2 to prove that ZB ≤ Z for this class of model. In deriving the clamping result
of §4.1, in Theorem 7 we show an interesting, stronger result on how the optimum Bethe free energy
changes as the singleton marginal qi is varied over [0, 1].

4.1 Clamping a variable can only increase the Bethe partition function

Let ZB be the Bethe partition function for the original model. Clamp variable Xi and form the new
approximation Z(i)

B =
∑1
j=0 ZB |Xi=j . In this Section, we shall prove the following Theorem.

Theorem 5. For an attractive binary pairwise model and any variable Xi, Z
(i)
B ≥ ZB .

We first introduce notation and derive preliminary results, which build to Theorem 7, our strongest
result, from which Theorem 5 easily follows. Let q = (q1, . . . , qn) be a location in n-dimensional
pseudomarginal space, i.e. qi is the singleton pseudomarginal q(Xi = 1) in the local polytope. Let
F(q) be the Bethe free energy computed at q using Bethe optimum pairwise pseudomarginals given
by the formula for q(Xi = 1, Xj = 1) = ξij(qi, qj ,Wij) in (Welling and Teh, 2001), i.e. for an
attractive model, for edge (i, j), ξij is the lower root of

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0, (2)

where αij = eWij − 1, and Wij > 0 is the strength (associativity) of the log-potential edge weight.

Let G(q) = −F(q). Note that logZB = maxq∈[0,1]n G(q). For any x ∈ [0, 1], consider the optimum
constrained by holding qi = x fixed, i.e. let logZBi(x) = maxq∈[0,1]n:qi=x G(q). Let r∗(x) =
(r∗1(x), . . . , r∗i−1(x), r∗i+1(x), . . . , r∗n(x)) with corresponding pairwise terms {ξ∗ij}, be an arg max
for where this optimum occurs. Observe that ZBi(x) is the ‘Bethe partition function constrained to
qi = x’, with logZBi(0) = logZB |Xi=0, logZBi(1) = logZB |Xi=1 and logZB = logZBi(q

∗
i ) =

maxq∈[0,1]n G(q), where q∗i is a marginal of Xi at which the global optimum is achieved.

To prove Theorem 5, we need a sufficiently good upper bound on logZBi(q
∗
i ) compared to

logZBi(0) and logZBi(1). First we demonstrate what such a bound could be, then prove that
this holds. Let Si(x) = −x log x− (1− x) log(1− x) be the standard singleton entropy.

Lemma 6 (Demonstrating what would be a sufficiently good upper bound on logZB). If ∃x ∈ [0, 1]
such that logZB ≤ x logZBi(1) + (1− x) logZBi(0) + Si(x), then:
(i) ZBi(0) + ZBi(1)− ZB ≥ emfc(x) where fc(x) = 1 + ec − exc+Si(x),
m = min(logZBi(0), logZBi(1)) and c = | logZBi(1)− logZBi(0)|; and
(ii) ∀x ∈ [0, 1], fc(x) ≥ 0 with equality iff x = σ(c) = 1/(1 + exp(−c)), the sigmoid function.

Proof. (i) This follows easily from the assumption. (ii) This is easily checked by differentiating. It
is also given in (Koller and Friedman, 2009, Proposition 11.8).

See Figure 6 in the Supplement for example plots of the function fc(x). Lemma 6 motivates us to
consider if perhaps logZBi(x) might be upper bounded by x logZBi(1)+(1−x) logZBi(0)+Si(x),
i.e. the linear interpolation between logZBi(0) and logZBi(1), plus the singleton entropy term
Si(x). It is easily seen that this would be true if r∗(qi) were constant. In fact, we shall show that
r∗(qi) varies in a particular way which yields the following, stronger result, which, together with
Lemma 6, will prove Theorem 5.

Theorem 7. Let Ai(qi) = logZBi(qi)− Si(qi). For an attractive binary pairwise model, Ai(qi) is
a convex function.

Proof. We outline the main points of the proof. Observe that Ai(x) = maxq∈[0,1]n:qi=x G(q) −
Si(x), where G(q) = −F(q). Note that there may be multiple arg max locations r∗(x). As shown
in (Weller and Jebara, 2013), F is at least thrice differentiable in (0, 1)n and all stationary points lie
in the interior (0, 1)n. Given our conditions, the ‘envelope theorem’ of (Milgrom, 1999, Theorem
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Figure 1: 3d plots of vij = Q−1
ij , using ξij(qi, qj ,W ) from (Welling and Teh, 2001).

1) applies, showing that Ai is continuous in [0, 1] with right derivative3

A′i+(x) = max
r∗(qi=x)

∂

∂x
[G(qi = x, r∗(x))− Si(x)] = max

r∗(qi=x)

∂

∂x
[G(qi = x, r∗(x))]− dSi(x)

dx
.

(3)
We shall show that this is non-decreasing, which is sufficient to show the convexity result of Theorem
7. To evaluate the right hand side of (3), we use the derivative shown by Welling and Teh (2001):

∂F
∂qi

= −θi + logQi,

where logQi = log
(1− qi)di−1

qdi−1
i

∏
j∈N (i)(qi − ξij)∏

j∈N (i)(1 + ξij − qi − qj)
(as in Weller and Jebara, 2013)

= log
qi

1− qi
+ log

∏
j∈N (i)

Qij , here defining Qij =

(
qi − ξij

1 + ξij − qi − qj

)(
1− qi
qi

)
.

A key observation is that the log qi
1−qi term is exactly −dSi(qi)

dqi
, and thus cancels the −dSi(x)

dx term

at the end of (3). Hence, A′i+(qi) = maxr∗(qi)

[
−
∑
j∈N (i) logQij(qi, r

∗
j , ξ
∗
ij)
]
. 4

It remains to show that this expression is non-decreasing with qi. We shall show something stronger,
that at every arg max r∗(qi), and for all j ∈ N (i),− logQij is non-decreasing⇔ vij = Q−1

ij is non-
decreasing. The result then follows since the max of non-decreasing functions is non-decreasing.

See Figure 1 for example plots of the vij function, and observe that vij appears to decrease with
qi (which is unhelpful here) while it increases with qj . Now, in an attractive model, the Bethe
free energy is submodular, i.e. ∂2F

∂qi∂qj
≤ 0 (Weller and Jebara, 2013; Korc̆ et al., 2012), hence as

qi increases, r∗j (qi) can only increase (Topkis, 1978). For our purpose, we must show that
dr∗j
dqi

is

sufficiently large such that dvijdqi
≥ 0. This forms the remainder of the proof.

At any particular arg max r∗(qi), writing v = vij [qi, r
∗
j (qi), ξ

∗
ij(qi, r

∗
j (qi))], we have

dv

dqi
=

∂v

∂qi
+

∂v

∂ξij

dξ∗ij
dqi

+
∂v

∂qj

dr∗j
dqi

=
∂v

∂qi
+

∂v

∂ξij

∂ξ∗ij
∂qi

+
dr∗j
dqi

(
∂v

∂ξij

∂ξ∗ij
∂qj

+
∂v

∂qj

)
. (4)

From (Weller and Jebara, 2013), ∂ξij
∂qi

=
αij(qj−ξij)+qj

1+αij(qi−ξij+qj−ξij) and similarly, ∂ξij
∂qj

=
αij(qi−ξij)+qi

1+αij(qj−ξij+qi−ξij) , where αij = eWij − 1. The other partial derivatives are easily derived:
∂v
∂qi

=
qi(qj−1)(1−qi)+(1+ξij−qi−qj)(qi−ξij)

(1−qi)2(qi−ξij)2 , ∂v
∂ξij

=
qi(1−qj)

(1−qi)(qi−ξij)2 , and ∂v
∂qj

= −qi
(1−qi)(qi−ξij) .

The only remaining term needed for (4) is
dr∗j
dqi

. The following results are proved in the Appendix,
subject to a technical requirement that at an arg max, the reduced Hessian H\i, i.e. the matrix of

3This result is similar to Danskin’s theorem (Bertsekas, 1995). Intuitively, for multiple argmax locations,
each may increase at a different rate, so here we must take the max of the derivatives over all the argmax.

4We remark that Qij is the ratio
(
p(Xi=1,Xj=0)

p(Xi=0,Xj=0)

)/(
p(Xi=1)
p(Xi=0)

)
=

p(Xj=0|Xi=1)

p(Xj=0|Xi=0)
.
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second partial derivatives of F after removing the ith row and column, must be non-singular in
order to have an invertible locally linear function. Call this required property P . By nature, each
H\i is positive semi-definite. If needed, a small perturbation argument allows us to assume that no
eigenvalue is 0, then in the limit as the perturbation tends to 0, Theorem 7 holds since the limit of
convex functions is convex. Let [n] = {1, . . . , n} and G be the topology of the MRF.

Theorem 8. For any k ∈ [n] \ i, let Ck be the connected component of G \ i that contains Xk. If
Ck + i is a tree, then dr∗k

dqi
=
∏

(s→t)∈P (i k)
ξ∗st−r

∗
sr
∗
t

r∗s (1−r∗s ) ,where P (i k) is the unique path from i to
k in Ck + i, and for notational convenience, define r∗i = qi. Proof in Appendix (subject to P).

Indeed, Theorem 8 applies for any combination of attractive and repulsive edges. The result is
remarkable, yet also intuitive. In the numerator, ξst − qsqt = Covq(Xs, Xt), increasing with Wij

and equal to 0 atWij = 0 (Weller and Jebara, 2013), and in the denominator, qs(1−qs) = Varq(Xs),
hence the ratio is exactly what is called in finance the beta of Xt with respect to Xs.5

In particular, Theorem 8 shows that for any j ∈ N (i) whose component is a tree,
dr∗j
dqi

=
ξ∗ij−qir

∗
j

qi(1−qi) .
The next result shows that in an attractive model, additional edges can only reinforce this sensitivity.

Theorem 9. In an attractive model with edge (i, j),
dr∗j (qi)

dqi
≥ ξ∗ij−qir

∗
j

qi(1−qi) . Proof in Appendix (subject
to P).

Now collecting all terms, substituting into (4), and using (2), after some algebra yields that dv
dqi
≥ 0,

as required to prove Theorem 7. This now also proves Theorem 5.

4.2 The Bethe partition function lower bounds the true partition function

Theorem 5, together with an argument similar to the proof of Theorem 3, easily yields a new proof
that ZB ≤ Z for an attractive binary pairwise model.

Theorem 10 (first proved by Ruozzi, 2012). For an attractive binary pairwise model, ZB ≤ Z.

Proof. We shall use induction on k to show that the following statement holds for all k:
If a MRF may be rendered acyclic by deleting k vertices v1, . . . , vk, then ZB ≤ Z.
The base case k = 0 holds since the Bethe approximation is ExactOnTrees. Now assume the result
holds for k−1 and consider a MRF which requires k vertices to be deleted to become acyclic. Clamp
variableXk and consider Z(k)

B =
∑1
j=0 ZB |Xk=j . By Theorem 5, ZB ≤ Z(k)

B ; and by the inductive
hypothesis, ZB |Xk=j ≤ Z|Xk=j ∀j. Hence, ZB ≤

∑1
j=0 ZB |Xk=j ≤

∑1
j=0 Z|Xk=j = Z.

5 Experiments

For an approximation which is ExactOnTrees, it is natural to try clamping a few variables to remove
cycles from the topology. Here we run experiments on binary pairwise models to explore the po-
tential benefit of clamping even just one variable, though the procedure can be repeated. For exact
inference, we used the junction tree algorithm. For approximate inference, we used Frank-Wolfe
(FW, Frank and Wolfe, 1956): At each iteration, a tangent hyperplane to the approximate free en-
ergy is computed at the current point, then a move is made to the best computed point along the
line to the vertex of the local polytope with the optimum score on the hyperplane. This proceeds
monotonically, even on a non-convex surface, hence will converge (since it is bounded), though
it may be only to a local optimum and runtime is not guaranteed. This method typically produces
good solutions in reasonable time compared to other approaches (Belanger et al., 2013; Weller et al.,
2014) and allows direct comparison to earlier results (Meshi et al., 2009; Weller et al., 2014). To
further facilitate comparison, in this Section we use the same unbiased reparameterization used by
Weller et al. (2014), with E = −

∑
i∈V θixi −

∑
(i,j)∈E

Wij

2 [xixj + (1− xi)(1− xj)].

5Sudderth et al. (2007) defined a different, symmetric βst = ξst−qsqt
qs(1−qs)qt(1−qt) for analyzing loop series. In

our context, we suggest that the ratio defined above may be a better Bethe beta.
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Test models were constructed as follows: For n variables, singleton potentials were drawn θi ∼
U [−Tmax, Tmax]; edge weights were drawn Wij ∼ U [0,Wmax] for attractive models, or Wij ∼
U [−Wmax,Wmax] for general models. For models with random edges, we constructed Erdős-Renyi
random graphs (rejecting disconnected samples), where each edge has independent probability p of
being present. To observe the effect of increasing n while maintaining approximately the same
average degree, we examined n = 10, p = 0.5 and n = 50, p = 0.1. We also examined models on
a complete graph topology with 10 variables for comparison with TRW in (Weller et al., 2014). 100
models were generated for each set of parameters with varying Tmax and Wmax values.

Results are displayed in Figures 2 to 4 showing average absolute error of logZB vs logZ and aver-
age `1 error of singleton marginals. The legend indicates the different methods used: Original is FW
on the initial model; then various methods were used to select the variable to clamp, before running
FW on the 2 resulting submodels and combining those results. avg Clamp for logZ means average
over all possible clampings, whereas all Clamp for marginals computes each singleton marginal as
the estimated p̂i = ZB |Xi=1/(ZB |Xi=0 + ZB |Xi=1). best Clamp uses the variable which with
hindsight gave the best improvement in logZ estimate, thereby showing the best possible result for
logZ. Similarly, worst Clamp picks the variable which showed worst performance. Where one
variable is clamped, the respective marginals are computed thus: for the clamped variable Xi, use
p̂i as before; for all others, take the weighted average over the estimated Bethe pseudomarginals on
each sub-model using weights 1− p̂i and p̂i for sub-models with Xi = 0 and Xi = 1 respectively.

maxW and Mpower are heuristics to try to pick a good variable in advance. Ideally, we would like
to break heavy cycles, but searching for these is NP-hard. maxW is a simple O(|E|) method which
picks a variable Xi with maxi∈V

∑
j∈N (i) |Wij |, and can be seen to perform well (Liu et al., 2012

proposed the same maxW approach for inference in Gaussian models). One way in which maxW
can make a poor selection is to choose a variable at the centre of a large star configuration but far
from any cycle. Mpower attempts to avoid this by considering the convergent series of powers of a
modified W matrix, but on the examples shown, this did not perform significantly better. See §8.1
in the Appendix for more details on Mpower and further experimental results.

FW provides no runtime guarantee when optimizing over a non-convex surface such as the Bethe
free energy, but across all parameters, the average combined runtimes on the two clamped sub-
models was the same order of magnitude as that for the original model, see Figure 5.

6 Discussion

The results of §4 immediately also apply to any binary pairwise model where a subset of variables
may be flipped to yield an attractive model, i.e. where the topology is balanced with no frustrated
cycles (Harary, 1953; Weller et al., 2014). For this class, together with the lower bound of §3,
we have sandwiched the range of ZB (equivalently, given ZB , we have sandwiched the range of the
true partition function Z) and bounded its error; further, clamping any variable, solving for optimum
logZB on sub-models and summing is guaranteed to be more accurate than solving on the original
model. In some cases, it may also be faster; indeed, some algorithms such as LBP may fail on the
original model but perform well on clamped sub-models.

Methods presented may prove useful for analyzing general (non-attractive) models, or for other
applications. As one example, it is known that the Bethe free energy is convex for a MRF whose
topology has at most one cycle (Pakzad and Anantharam, 2002). In analyzing the Hessian of the
Bethe free energy, we are able to leverage this to show the following result, which may be useful for
optimization (proof in Appendix; this result was conjectured by N. Ruozzi).
Lemma 11. In a binary pairwise MRF (attractive or repulsive edges, any topology), for any subset
of variables S ⊆ V whose induced topology contains at most one cycle, the Bethe free energy (using
optimum pairwise marginals) over S, holding variables V\S at fixed singleton marginals, is convex.

In §5, clamping appears to be very helpful, especially for attractive models with low singleton poten-
tials where results are excellent (overcoming TRW’s advantage in this context), but also for general
models, particularly with the simple maxW selection heuristic. We can observe some decline in
benefit as n grows but this is not surprising when clamping just a single variable. Note, however,
that non-attractive models exist such that clamping and summing over any variable can lead to a
worse Bethe approximation of logZ, see Figure 5c for a simple example on four variables.
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Figure 2: Average errors vs true, complete graph on n = 10. TRW in pink. Consistent legend throughout.
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Figure 3: Average errors vs true, random graph on n = 10, p = 0.5. Consistent legend throughout.
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Figure 5: Left: Average ratio of combined sub-model runtimes to original runtime (using maxW, other choices
are similar). Right: Example model where clamping any variable worsens the Bethe approximation to logZ.

It will be interesting to explore the extent to which our results may be generalized beyond binary
pairwise models. Further, it is tempting to speculate that similar results may be found for other
approximations. For example, some methods that upper bound the partition function, such as TRW,
might always yield a lower (hence better) approximation when a variable is clamped.
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APPENDIX: SUPPLEMENTARY MATERIAL FOR
CLAMPING VARIABLES AND APPROXIMATE INFERENCE

In this Appendix, we provide:

• Figure 6 showing examples of the fc(x) function introduced in Lemma 6;
• In Section 7, theoretical results on the Hessian leading to proofs of Theorem 8 and (a

stronger version of) Theorem 9 from §4.1, and Lemma 11 from §6; and
• In Section 8, additional illustrative experimental results with details on the Mpower selec-

tion heuristic, and further discussion of methods and related work.
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Figure 6: Plots of upper bound fc(x) against x for various values of c

7 The Hessian and Proofs of Earlier Results

In this Section, we first discuss properties of the Hessian in §7.1, then use these in §7.2 to prove
Theorems 8 and 9, and Lemma 11. Define the interior to be all points q ∈ (0, 1)n. Recall that
r∗(x) = (r∗1(qi), . . . , r

∗
i−1(qi), r

∗
i+1(qi), . . . , r

∗
n(qi)) with corresponding pairwise terms {ξ∗ij}, is an

arg max of G(q) = −F(q) where qi is held fixed at a particular value. For notational convenience,
define r∗i = qi.

7.1 Properties of the Hessian

From (Weller and Jebara, 2013), we have all terms of the Hessian matrix Hjk = ∂2F
∂qj∂qk

:

Hjk =

{
qjqk−ξjk
Tjk

if (j, k) ∈ E
0 if (j, k) /∈ E

, Hjj = − dj − 1

qj(1− qj)
+

∑
k∈N (j)

qk(1− qk)

Tjk
, (5)

where dj = |N (j)| is the degree of j, and Tjk = qjqk(1 − qj)(1 − qk) − (ξjk − qjqk)2 ≥ 0, with
equality only at an edge (i.e. qj or qk ∈ {0, 1}). For an attractive edge (j, k), in the interior, as
shown in (Weller and Jebara, 2013, Lemma 14 in Supplement), ξjk − qjqk > 0 and hence Hjk < 0.

Now write

Hjj =
1

qj(1− qj)
+

∑
k∈N (j)

(
qk(1− qk)

Tjk
− 1

qj(1− qj)

)
. (6)

Consider the term in large parentheses for some k ∈ N (j). First observe that the term is ≥ 0,
strictly > 0 in the interior, whether the edge is attractive or repulsive. Since Hjj > 0, on the surface
∂F
∂qj

∣∣∣
r∗

= 0, we have

∂r∗j
∂r∗k

= −Hjk

Hjj

∣∣∣
r∗
, (7)

which also holds for k = i where we define r∗i = qi.
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Further, we may incorporate the term for k to obtain

Hjj ≥
1

qj(1− qj)
+
qk(1− qk)

Tjk
− 1

qj(1− qj)
=
qk(1− qk)

Tjk
,

with equality iff j has no neighbor other than k (again allowing k = i), in which case,

∂r∗j
∂r∗k

=
ξ∗jk − r∗j r∗k
r∗k(1− r∗k)

. (8)

We also show the following results, though the remainder of this Section §7.1 is not used until later
when we prove Theorem 9 in §7.2.1.

Considering the term in large parentheses from (6), using the definition of Tjk, we may write(
qk(1− qk)

Tjk
− 1

qj(1− qj)

)
=

(
ξjk − qjqk

Tjk

)(
ξjk − qjqk
qj(1− qj)

)
= −Hjkβj→k, (9)

where we define βj→k =
ξjk−qjqk
qj(1−qj) , which as mentioned in the main paper after Theorem 8, is equal

to Covq(Xj ,Xk)
Varq(Xj) , called in finance the beta of Xk with respect to Xj . This is clearly positive for an

attractive edge. We next show that the range of βj→k is bounded, as would be expected for beta.

Lemma 12. In the interior, for an edge (j, k): if attractive, 0 < βj→k ≤ αjk

αjk+1 = 1− e−Wjk < 1;

if repulsive, −1 < eWjk − 1 = αjk ≤ βj→k < 0. In either case, |βj→k| =
∣∣∣ ξjk−qjqkqj(1−qj)

∣∣∣ ≤
1− e−|Wjk| < 1.

Proof. This follows from (Weller and Jebara, 2013, Lemma 6) and the corresponding flipped result
(Weller and Jebara, 2014, Lemma 10 in Supplement; consider each of the 2 cases for pjk therein).

Define β∗j→k = βj→k
∣∣
r∗

. Regarding (8), note that β∗j→k ≥
∂r∗k
∂r∗j

with equality iff N (k) = {j}. This
notation will become clear when we use it in §7.2.1 to prove Theorem 9.

7.2 Derivation of earlier results

Using the results of §7.1, we first provide a general Theorem from which Lemma 11 follows as an
immediate corollary.
Theorem 13. For any binary pairwise MRF where the Bethe free energy is convex, adding fur-
ther variables to the model and holding them at fixed singleton marginal values (optimum pairwise
marginals are computed using the formula of Welling and Teh, 2001), leaves the Bethe free energy
over the original variables convex.

Proof. The Bethe free energy is convex⇔ the Hessian is everywhere positive semi-definite. When
new variables are added to the system, considering (5) and (6), the only effect on the sub-Hessian
restricted to the original variables is potentially to increase the diagonal terms Hjj for any original
variable j which is adjacent to a new variable. By Weyl’s inequality, this can only increase the
minimum eigenvalue of the sub-Hessian, and the result follows.

Since the Bethe free energy is convex for any model whose entire topology contains at most one
cycle (Pakzad and Anantharam, 2002), Lemma 11 follows.

We next turn to Theorem 8, then use this to prove a stronger version of Theorem 9. Keep in mind
that, as shown in (Weller and Jebara, 2013), each stationary point lies in an open region in the
interior q ∈ (0, 1)n. Further, as discussed in §4.1, we assume that at any arg max point r∗(qi), the
reduced Hessian H\i is non-singular. Hence, writing ∇n−1F

∣∣
qi

for the (n − 1)-vector of partial

derivatives ∂F(q)
∂qj

∣∣∣
qi
∀j 6= i, there is an open region around any (qi, r

∗(qi)) where the function

∇n−1F
∣∣
qi

= 0 may be well approximated by an invertible linear function, allowing us to solve
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(as in the implicit function theorem) for the total derivatives
dr∗j
dqi

as the unique solutions to the

linear system
dr∗j
dqi

=
∂r∗j
∂qi

+
∑
k/∈{i,j}

∂r∗j
∂r∗k

dr∗k
dqi
∀j 6= i, where here

∂r∗j
∂r∗k

always means on the surface

∇n−1F
∣∣
qi

= 0. In addition, since H\i is real, symmetric, positive definite, with all main diagonal
≥ 0 and all off-diagonal ≤ 0, it is an M-matrix (indeed a Stieltjes matrix), which we shall use in
§7.2.1. We assume these points for the rest of this Section.

Notation: Let Dj =
dr∗j
dqi

, and ∂jk =
∂r∗j
∂r∗k

, so Dj =
∑
k/∈{i,j} ∂jkDk + ∂ji ∀j 6= i. For notational

convenience, define r∗i = qi and take Di = 1. Let [n] = {1, . . . , n} and [n] \ i = {1, . . . , n} \ {i}.
Note that ∂jk =

∂r∗j
∂r∗k
≤ β∗k→j (equality iff j has no neighbor other than k), as defined above. We

shall write Hessian terms such as Hjk to mean Hjk

∣∣
r∗

where this is implied by the context.

We first need the following Lemma.
Lemma 14. Consider a MRF with n variables, where then one more variable Xn+1 is added with
singleton marginal r∗n+1, adjacent to exactly one of the original n variables, say Xa with a ∈ [n]

(note we allow a = i), then: D1, . . . , Dn are unaffected, and Dn+1 =
ξ∗a,n+1−r

∗
ar
∗
n+1

r∗a(1−r∗a) Da.

Proof. We have the linear system Dj =
∑
k/∈{i,j} ∂jkDk + ∂ji ∀j ∈ [n] \ i. When Xn+1 is added,

this yields a new equation for Dn+1, which as shown in (8), is Dn+1 =
ξ∗a,n+1−r

∗
ar
∗
n+1

r∗a(1−r∗a) Da, and
the only other equation that changes is the one for Da, where we write ∂′ak and ∂′ai for the new
coefficients. Hence, it is sufficient to show that the earlier solutions for D1, . . . , Dn satisfy the new
equation for Da, i.e. if Da =

∑
k∈[n+1]\{i,a} ∂

′
akDk + ∂′ai.

Observe from (7) that ∂′ak = ∂akHaa/H
′
aa ∀k ∈ [n], where H ′aa incorporates the new Xn+1

variable. Hence,∑
k∈[n+1]\{i,a}

∂′akDk + ∂′ai =
Haa

H ′aa

 ∑
k/∈{i,j}

∂akDk + ∂ai

+ ∂′a,n+1Dn+1

=
Haa

H ′aa
Da +

ξ∗a,n+1 − r∗ar∗n+1

Ta,n+1H ′aa

ξ∗a,n+1 − r∗ar∗n+1

r∗a(1− r∗a)
Da by (7), (5) and just above

=
Da

H ′aa

[
Haa +

(
ξ∗a,n+1 − r∗ar∗n+1

)2
Ta,n+1r∗a(1− r∗a)

]

=
Da

H ′aa

[
Haa +

(
r∗n+1(1− r∗n+1)

Ta,n+1
− 1

r∗a(1− r∗a)

)]
(definition of Ta,n+1)

=
Da

H ′aa
[Haa + (H ′aa −Haa)] = Da

Theorem 8 may now be proved by induction on |Ck|. The base case |Ck| = 1 follows from (8). The
inductive step follows from Lemma 14 by considering a leaf.

7.2.1 Proof of (stronger version of) Theorem 9:

As above, we have the linear system given by the following equations:

Dj =
∑

k/∈{i,j}

∂jkDk + ∂ji ∀j 6= i ⇔ −∂ji =
∑
k 6=i

[∂jk − δjk]Dk (10)

with ∂jk =
∂r∗j
∂rk∗

= −Hjk

Hjj
k /∈ {i, j}, ∂jj := 0, ∂ji =

∂r∗j
∂qi

= −Hji

Hjj
, δjk =

{
1 j = k

0 j 6= k
.

Hence we may rewrite (10), multiplying by −Hjj , to give the equivalent system∑
k 6=i

HjkDk = −Hji ∀j 6= i (11)
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Note equation (11) makes intuitive sense: for each variable Xj , we have Fj = 0 at a stationary
point, then taking the total derivative with respect to qi gives Hji +

∑
k 6=iHjkDk = 0.

By Theorem 8, we have the complete solution vector Dk ∀k 6= i provided the topology is
acyclic. In this setting, we rewrite the result of Theorem 8 using the β∗ notation from above:
Dk =

∏
(s→t)∈P (i k) β

∗
s→t, where here P (i k) is the unique path from i to k.

For a general graph, there may be many paths from i to k. Let Π(i  k) be the set of all such
directed paths. For any r∗, for any particular path P (i  k) ∈ Π(i  k), define its weight to be
W [P (i k)] =

∏
(s→t)∈P (i k) β

∗
s→t. We shall prove the following result.

Theorem 15. For an attractive model,

Dk =
dr∗k
dqi
≥ max
P (i k)∈Π(i k)

W [P (i k)].

Note this is clearly stronger than Theorem 9 since ∀j ∈ N (i), the path going directly i → j is one
member of Π(i j), though in general there may be many others.

Proof. For any particular r∗, let G′ be the weighted directed graph formed from the topology of the
MRF by replacing each undirected edge s − t by two directed edges: s → t with weight β∗s→t and
t→ s with weight β∗t→s. In an attractive model, all β∗s→t ∈ (0, 1), see Lemma 12.

It is a simple application of Dijkstra’s algorithm to construct from G′ a tree of all maximum weight
directed paths from i to each vertex j 6= i, which we call T .6 (For our purpose we just need to know
that such a tree T exists.)

We aim to solve (11), which we write as H\iD = −Hi, where our goal is to solve for D, which is
the vector of Dk ∀k 6= i, and Hi is the ith column of H without its ith element. Let HT\i be the
reduced Hessian for the model on T (which is missing some edges), and HTi be the ith column of
the Hessian for the model on T without its ith element. In the sub-model with only the edges of T ,
by construction and Theorem 8, DTk = maxP (i k)∈Π(i k)W [P (i k)]. Hence, it is sufficient to
show that adding the extra edges from T to G cannot decrease any Dk. This forms the remainder of
the proof, where we shall require the following nonsingular M-matrix property of H\i: its inverse is
elementwise non-negative (Fan, 1958, Theorem 5’).

Let ∆ = H\i − HT\i (this accounts for edges in E(G) \ E(T ) not incident to i), η = Hi − HTi
(this accounts for edges in E(G) \E(T ) incident to i) and δ = D−DT . We must show that δ ≥ 0
elementwise. We have HT\iD

T = −HTi and H\iD = −Hi, hence HT\iD
T − η = −HTi − η =

−Hi = H\iD = (HT\i + ∆)(DT + δ), hence −η = (HT\i + ∆)δ + ∆DT ⇔ δ = (H\i)
−1(−η −

∆DT ). Thus, it is sufficient to show that the (n−1) vector−η−∆DT is elementwise non-negative.

Recall (5) and (9). −η−∆DT may be written as the sum of −ηe−∆eD
T , with one ηe and ∆e for

each edge e = (s, t) in E(G) \ E(T ). For each such edge e, we have 2 cases:

Case 1, i /∈ {s, t}: ηe = 0; ∆e has only 4 non-zero elements, at locations (s, s), (s, t), (t, s), (t, t).
Showing only these elements,

∆e =

( s t

s −Hstβ
∗
s→t Hst

t Hst −Hstβ
∗
t→s

)
= −Hst

( s t

s β∗s→t −1
t −1 β∗t→s

)
,where −Hst > 0 for an attractive edge.

Hence,−ηe−∆eD
T is 0 everwhere except element s which is−Hst(D

T
t −DTs β∗s→t), and element

t which is −Hst(D
T
s −DTt β∗t→s). Observe that both expressions are ≥ 0 by construction of T (for

example, considering the first bracketed term, observe that DTt is the maximum weight of a path
from i to t, whereas DTs β

∗
s→t is the weight of a path to t going through s).

Case 2, i ∈ {s, t}: WLOG suppose the edge is (i, s). −ηe is zero everywhere except element s
which is −His (positive). ∆e has just one non-zero element at (s, s) which is −Hisβ

∗
s→i. Hence,

−ηe−∆eD
T is 0 everwhere except element swhich is−His(1−DTs β∗s→i) > 0 by Lemma 12.

6We want the max of the prod of edge weights⇔ max of the log of the prod of edge weights⇔ max of the
sum of the log of edge weights (all negative)⇔ min of the sum of - log of the edge weights (all positive); so
really we construct the usual shortest directed paths tree using - log of the edge weights, which are all positive.
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Figure 7: Average errors vs true, complete graph on n = 10. Consistent legend throughout.
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Figure 8: Average errors vs true, random graph on n = 10, p = 0.5. Consistent legend throughout.
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Figure 9: Average errors vs true, random graph on n = 50, p = 0.1. Consistent legend throughout.
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Figure 10: ‘Lamp’ topology.
maxW is likely to choose x6 since it has the
highest degree, but x4 is typically a better
choice since it lies on cycles. Mpower can rec-
ognize this and make a better choice.

8 Additional Experiments and Further Discussion

All of the experiments reported in §5 were also run at other settings. In particular, the earlier results
show the poor performance of the standard Bethe approximation in estimating singleton marginals
for attractive models with low singleton potentials, and indicate how clamping repairs this. Here, in
Figures 7-9, we show results for the same topologies using the higher singleton potentials Tmax = 2
for attractive models, and also show results with low singleton potentials Tmax = 0.1 for general
(non-attractive) models.

Note that in some examples of attractive models, when the ‘worst clamp’ variable was clamped, the
resulting Bethe approximation to logZ appears to worsen (see Figure 9a), which seems to conflict
with Theorem 5. The explanation is that in these examples, Frank-Wolfe is failing to find the global
Bethe optimum, as was confirmed by spot checking.

Next we show results for a particular fixed topology we call a ‘lamp’, see Figure 10, which illus-
trates how maxW can sometimes select a poor variable to clamp. We explain the Mpower selection
heuristic and demonstrate that it performs much better on this topology.
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(d) general margs, Tmax = 2

Figure 11: Average errors vs true, ‘lamp’ topology Tmax = 2. Consistent legend throughout. Mpower
performs well, significantly better than maxW.
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Figure 12: Average errors vs true, ‘lamp’ topology Tmax = 0.1. Consistent legend throughout. Mpower
performs well, significantly better than maxW for logZ.

8.1 Mpower heuristic

We would like an efficient way to select a variable to clamp which lies on many heavy simple cycles.
One problem is how to define heavy. Even with a good definition, it is still NP-hard to search over
all simple cycles. The idea for Mpower is as follows: Assign each edge (i, j) a weight based on
|Wij | and create a matrix M of these weights. If M is raised to the kth power, then the ith diagonal
element in Mk is the sum over all paths of length k from i to i of the product of the edge weights
along the path. We might consider the sum

∑∞
k=1M

k and use the diagonal elements to rank the
vertices, choosing the one with highest total score. Recalling Theorem (15), it is sensible to assign
edge weightsMij based on possible β∗i→j values. Given Lemma 12, a first idea is to use 1−e−|Wij |.

However, we’d like to be sure that the matrix series
∑∞
k=1M

k is convergent, allowing it to be
computed as (I −M)−1− I (since we shall be interested only in ranking the diagonal terms, in fact
there is no need to subtract I at the end). Thus, we need the spectral radius ρ(M) < 1. A sufficient
condition is that all row sums are < 1. Since each term 1 − e−|Wij | < 1 and there at most n − 1
such elements in any row, our first heuristic was to set Mij = 1

n−1 (1− e−|Wij |). We then made two
adjustments.

First, note that the series
∑∞
k=1M

k overcounts all cycles, though at an exponentially decaying rate.
It is hard to repair this. However, it also includes relatively high value terms coming from paths
from i to any neighbor j and straight back again, along with all powers of these. We should like
to discard all of these, hence from each ith diagonal term of (I −M)−1, we subtract si/(1 − si),
where si is the ith diagonal term of M2. This is very similar to the final version we used, and gives
only very marginally worse results on the examples we considered.

For our final version, we observe that 1− e−|Wij | decays rapidly, and ≈ tanh
|Wij |

2 . Given the form
of the loop series expansion for a single cycle, which contains tanh

Wij

4 terms (Weller et al., 2014,
Lemma 5), we tried instead using Mij = 1

n−1 tanh
|Wij |

4 , and it is for this heuristic that results
are shown in Figures 11 (for Tmax = 2) and 12 (for Tmax = 0.1). Observe that for this topol-
ogy, Mpower performs close to optimally (almost the same results as for best Clamp), significantly
outperforming maxW in most settings. Note, however, that in the experiments on random graphs
reported in §5, Mpower did not outperform the simpler maxW heuristic. In future work, we hope to
improve the selection methods.
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8.2 Further discussion

Results for all experiments shown were generated using the Frank-Wolfe algorithm, which does
not necessarily find the global Bethe optimum but has been shown (e.g. Weller et al., 2014) to
perform well in practice and to scale well. We tried LBP as an alternative method for the Bethe
approximation and again observed significant improvement by clamping, though results were less
clean than for FW, for example LBP typically converged to worse local optima for attractive models.

In earlier work, Wainwright (2002, §3.4) developed elegant ideas leading to the tree-reweighted
(TRW) approach. These focused on bounds of expectations under p(x; θ∗) of a function f , which
are recovered by using the partition function (or tilted variants) and approximating the intractable
distribution p(x; θ∗) with a tractable p(x; θ). In some settings, say where f is an indicator function,
this may be seen as clamping but as far as we can see, the ideas are different.

16


	Introduction
	Related work

	Preliminaries
	Clamping a variable and related definitions

	Lower Bound on Approximate Partition Functions
	Attractive Binary Pairwise Models
	Clamping a variable can only increase the Bethe partition function
	The Bethe partition function lower bounds the true partition function

	Experiments
	Discussion
	The Hessian and Proofs of Earlier Results
	Properties of the Hessian
	Derivation of earlier results
	Proof of (stronger version of) Theorem 9:


	Additional Experiments and Further Discussion
	Mpower heuristic
	Further discussion


