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Here z denotes the leader point. Since f(z) < f(x') for each worker x', we see that there is an additional reduction nA(f(x) — f(z)) induced
by the leader. We can then obtain the standard convergence rate:

Empirical Results
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Figure: VGG16 on CIFAR-10 (on the left) and ResNet50 on ImageNet (on the right) with 4 workers. Test error for the center variable versus wall-clock time.
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Figure: ResNet20 on CIFAR-10. The identity of the worker that is recognized as the leader (i.e. rank) versus iterations (on the left) and the number of times each worker
was the leader (on the right).

e n is the number of groups and | is the number of workers in each group

When the landscape is locally convex, we expect that the new leader term will bring the step direction closer to the global minimizer. This

o X', X%, ..., X' are the parameters of the workers in the j group can be shown quantitatively for quadratic problems.

o X! is the local leader and X is the global leader (the best worker among local Theorem: Let f be a convex quadratic. If either the A is small, or the angle at x between the gradient and the Newton step is large, then at

—— Global Pulling leaders)

e A\ and A are the hyperparameters that denote the strength of the forces pulling
@ Giobal Leader

least half of the candidate leaders {z : f(z) < f(x)} will bring the step direction closer to the Newton direction dy in the sense that
angle(dy, —Vf(x) + A(z— x)) < angle(dy, —Vf(x)).
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