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Motivation

We consider distributed optimization under commu-
nication constraints for training deep learning models.
Our method differs from the state-of-art parameter-
averaging scheme EASGD [1] in a number of ways:
1. our objective formulation does not change the
location of stationary points compared to the original
optimization problem;

2.we avoid convergence decelerations caused by
pulling local workers descending to different local
minima to each other (i.e. to the average of their
parameters);

3. our update by design breaks the curse of symmetry
(the phenomenon of being trapped in poorly
generalizing sub-optimal solutions in symmetric
non-convex landscapes);

4. our approach is more communication efficient since
it broadcasts only parameters of the leader rather
than all workers.

Multi-Leader Setting

We propose a multi-leader setting well-aligned with
the hardware architecture:
• single computational node is formed by local workers
⇒ local leader
• group of nodes⇒ global leader

Figure: Trajectories of variables (x, y) during optimization.

Figure: The value of the objective function L(x, y) for each worker during training on a heavily
non-convex problem.

Figure: Low-rank matrix completion problems solved with EAGD and LGD.

LSGD updates

Objective function:

min
x1,1,x1,2,...,xn,l

L(x1,1, x1,2, . . . , xn,l)

:= min
x1,1,x1,2,...,xn,l

n∑︁
j=1

l∑︁
i=1

E[f(xj,i; ξj,i)] +
λ

2
||xj,i − x̃j||2 +

λG

2
||xj,i − x̃||2 (1)

Parameter update:

xj,it+1 = xj,it − ηgj,it (x
j,i
t )⏟  ⏞  

gradient descent

− λ(xj,it − x̃jt)⏟  ⏞  
local pulling

− λG(xj,it − x̃t)⏟  ⏞  
global pulling

(2)

• ξj,is are the data samples drawn from data distributionP
• n is the number of groups and l is the number of workers in each group
• xj,1, xj,2, . . . , xj,l are the parameters of the workers in the jth group
• x̃j is the local leader and x̃ is the global leader (the best worker among local
leaders)
• λ and λG are the hyperparameters that denote the strength of the forces pulling
the workers to their local and global leader respectively

Algorithm
LSGD Algorithm (Asynchronous)

Input: pulling coefficients λ, λG, learning rate η, local/global communication periods τ, τG
Initialize:
Randomly initialize x1,1, x1,2, ..., xn,l

Set iteration counters tj,i = 0
Set x̃j0 = rgmin

xj,1,...,xj,l
E[f(xj,i; ξj,i0 )] , x̃0 = rgmin

x1,1,...,xn,l
E[f(xj,i; ξj,i0 )];

repeat
for all j = 1, 2, . . . , n, i = 1, 2, . . . , l do . Do in parallel for each worker

Draw random sample ξj,itj,i
xj,i←− xj,i − ηgj,it (x

j,i)
tj,i = tj,i + 1;

if nlτ divides (
n∑︀
j=1

l∑︀
i=1

tj,i) then

x̃j = rgminxj,1,...,xj,lE[f(xj,i; ξ
j,i
tj,i)]. . Determine the local best workers

xj,i←− xj,i − λ(xj,i − x̃j) . Pull to the local best workers
end if

if nlτG divides (
n∑︀
j=1

l∑︀
i=1

tj,i) then

x̃ = rgminx1,1,...,xn,lE[f(xj,i; ξ
j,i
tj,i)]. . Determine the global best worker

xj,i←− xj,i − λG(xj,i − x̃) . Pull to the global best worker
end if

end for
until termination

Stationary Points of LSGD

The L(S)GD loss (1) has the property that the leader variable is always a stationary point of the underlying objective function. This is not the
case for E(A)SGD.
Theorem: Let Ωi be the points (x1, . . . , xp) where xi is the unique minimizer among (x1, . . . , xp). If x∗ = (w1, . . . ,wp) ∈ Ωi is a stationary
point of the LSGD objective function, then ∇f(wi) = 0.

Convergence Rates

Under the assumption of strong convexity of f, L(S)GD recovers the same convergence rate as SGD.
Theorem: For sufficiently small learning rate η, the LSGD step satisfies

Ef(x+) − f(x∗) ≤ (1− mη)(f(x) − f(x∗)) − ηλ(f(x) − f(z)) +
η2M

2
σ2.

Here z denotes the leader point. Since f(z) ≤ f(xi) for each worker xi, we see that there is an additional reduction ηλ(f(x)− f(z)) induced
by the leader. We can then obtain the standard convergence rate:
Theorem: If η decreases at the rate ηk = Θ(

1
k), then Ef(xk) − f(x∗) ≤ O( 1k).

This complexity matches other distributed algorithms such as Elastic Averaging SGD and Hogwild.
On large-scale problems, we may not exactly evaluate f to determine the leader, and instead use estimates of f. Suppose that we have
unbiased estimates̃︀f(xi) with uniformly bounded variance σ2f , and select the worker with lowest realized estimate to become the leader.
This increases the variance of the limit by no more than O(λ

p
nσf), where n is the number of workers.

Theorem: Suppose the leader is stochastic. Then limspk→∞Ef(xk) − f(x∗) ≤ 1
2ηκσ

2 + 4
mλ
ppσf. If η, λ decrease at the rate

ηk = Θ(
1
k), λk = Θ(

1
k), then Ef(xk) − f(x∗) ≤ O( 1k).

Improvements in Step Direction

When the landscape is locally convex, we expect that the new leader term will bring the step direction closer to the global minimizer. This
can be shown quantitatively for quadratic problems.
Theorem: Let f be a convex quadratic. If either the λ is small, or the angle at x between the gradient and the Newton step is large, then at
least half of the candidate leaders {z : f(z) ≤ f(x)} will bring the step direction closer to the Newton direction dN in the sense that
ngle(dN,−∇f(x) + λ(z− x)) ≤ ngle(dN,−∇f(x)).

Empirical Results

Figure: CNN7 on CIFAR-10 with 4 workers (on the left) and 16 workers (on the right). Test error for the center variable versus wall-clock time.

Figure: ResNet20 on CIFAR-10 with 4 workers (on the left) and 16 workers (on the right). Test error for the center variable versus wall-clock time.

Figure: VGG16 on CIFAR-10 (on the left) and ResNet50 on ImageNet (on the right) with 4 workers. Test error for the center variable versus wall-clock time.

Figure: ResNet20 on CIFAR-10. The identity of the worker that is recognized as the leader (i.e. rank) versus iterations (on the left) and the number of times each worker
was the leader (on the right).
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