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Abstract
Probabilistic graphical models are a key tool in
machine learning applications. Computing the
partition function, i.e., normalizing constant, is a
fundamental task of statistical inference but it is
generally computationally intractable, leading to
extensive study of approximation methods. Itera-
tive variational methods are a popular and success-
ful family of approaches. However, even state of
the art variational methods can return poor results
or fail to converge on difficult instances. In this
paper, we instead consider computing the parti-
tion function via sequential summation over vari-
ables. We develop robust approximate algorithms
by combining ideas from mini-bucket elimination
with tensor network and renormalization group
methods from statistical physics. The resulting
“convergence-free” methods show good empiri-
cal performance on both synthetic and real-world
benchmark models, even for difficult instances.

1. Introduction
Graphical Models (GMs) express the factorization of the
joint multivariate probability distribution over subsets of
variables via graphical relations among them. They have
played an important role in many fields, including com-
puter vision (Freeman et al., 2000), speech recognition
(Bilmes, 2004), social science (Scott, 2017) and deep learn-
ing (Hinton & Salakhutdinov, 2006). Given a GM, com-
puting the partition function Z (the normalizing constant)
is the essence of other statistical inference tasks such as
marginalization and sampling. The partition function can
be calculated efficiently in tree-structured GMs through an
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iterative (dynamic programming) algorithm eliminating, i.e.
summing up, variables sequentially. In principle, the elim-
ination strategy extends to arbitrary loopy graphs, but the
computational complexity is exponential in the tree-width,
e.g., the junction-tree method (Shafer & Shenoy, 1990). For-
mally, the computation task is #P-hard even to approximate
(Jerrum & Sinclair, 1993).

Variational approaches are often the most popular practical
choice for approximate computation of the partition func-
tion. They map the counting problem into an approximate
optimization problem stated over a polynomial (in the graph
size) number of variables. The optimization is typically
solved iteratively via a message-passing algorithm, e.g.,
mean-field (Parisi, 1988), belief propagation (Pearl, 1982),
tree-reweighted (Wainwright et al., 2005), or gauges and/or
re-parametrizations (Ahn et al., 2017; 2018 (accepted to
appear). Lack of accuracy control and difficulty in forcing
convergence in an acceptable number of steps are, unfor-
tunately, typical for hard GM instances. Markov chain
Monte Carlo methods (e.g., see Alpaydin, 2014) are also
popular to approximate the partition function, but typically
suffer, even more than variational methods, from slow con-
vergence/mixing.

Approximate elimination is a sequential method to estimate
the partition function. Each step consists of summation
over variables followed by (or combined with) approxima-
tion of the resulting complex factors. Notable flavors of
this method include truncation of the Fourier coefficients
(Xue et al., 2016), approximation by random mixtures of
rank-1 tensors (Wrigley et al., 2017), and arguably the most
popular, elimination over mini-buckets (Dechter & Rish,
2003; Liu & Ihler, 2011). One advantage of the mini-bucket
elimination approach is the ability to control the trade-off
between computational complexity and approximation qual-
ity by adjusting an induced-width parameter. Note that
analogous control in variational methods, such as varying
region sizes in generalized belief propagation (Yedidia et al.,
2001), typically results in much more complicated optimiza-
tion formulations to solve. Another important advantage
of mini-bucket elimination is that it is always guaranteed
to terminate and, usually, it does so quickly. This is in
contrast to iterative message-passing implementations of
variational methods which can be notoriously slow on diffi-
cult instances.
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Contribution. We improve the approximation quality of
mini-bucket methods using tensor network and renormal-
ization group approaches from statistical physics. In this
regard, our method extends a series of recent papers explor-
ing multi-linear tensor network transformations/contractions
(Novikov et al., 2014; Wrigley et al., 2017; Ahn et al., 2017;
2018 (accepted to appear). More generally, tensor network
renormalization algorithms (Levin & Nave, 2007; Evenbly
& Vidal, 2015) have been proposed in the quantum and sta-
tistical physics literature for estimating partition functions.
The algorithms consist of coarse-graining the graph/network
by contracting sub-graphs/networks using a low-rank projec-
tion as a subroutine. However, the existing renormalization
methods in the physics literature have focused primarily on
a restricted class of tensor-factorized models over regular
grids/lattices,1 while factor-graph models (Clifford, 1990)
over generic graphical structures are needed in most ma-
chine learning applications.

For generalizing them to factor-graph models, one would
face at two challenges: (a) coarse-graining of the tensor
network relies on the periodic structure of grid/lattices and
(b) its low-rank projections are only defined on “edge vari-
ables” that allows only two adjacent factors. To overcome
them, we first replace the coarse-graining step by sequential
elimination of the mini-bucket algorithms, and then use the
strategy of “variable splitting” in order to generate auxiliary
edge variables. Namely, we combine ideas from tensor net-
work renormalization and the mini-bucket schemes where
one is benefical to the other. We propose two algorithms,
which we call MBR and GBR:

• Mini-bucket renormalization (MBR) consists of se-
quentially splitting summation over the current (re-
maining) set of variables into subsets – multiple mini-
buckets which are then “renormalized”. We show that
this process is, in fact, equivalent to applying low-rank
projections on the mini-buckets to approximate the
variable-elimination process, thus resulting in better
approximation than the original mini-bucket methods.
In particular, we show how to resolve approximate
renormalization locally and efficiently through applica-
tion of truncated singular value decomposition (SVD)
over small matrices.

• While MBR is based on a sequence of local low-rank
approximations applied to the mini-buckets, global-
bucket renormalization (GBR) extends MBR by ap-
proximating mini-buckets globally. This is achieved by
first applying MBR to mini-buckets, then calibrating
the choice of low rank projections by minimizing the
partition function approximation error with respect to
renormalization of the “global-bucket”. Hence, GBR

1 The special models are related to what may be called Forney-
style grids/lattices (Forney, 2001) in the GM community.

takes additional time to run but may be expected to
yield better accuracy.

Both algorithms are easily applicable to arbitrary GMs with
interactions (factors) of high orders, hyper-graphs and large
alphabets. We perform extensive experiments on synthetic
(Ising models on complete and grid graphs) and real-world
models from the UAI dataset. In our experiments, both
MBR and GBR show performance superior to other state-
of-the-art elimination and variational algorithms.

2. Preliminaries
Graphical model. Consider a hyper-graph G = (V, E)
with vertices V = {1, · · · , n} and hyper-edges E ⊂ 2V . A
graphical model (GM)M = (G,F) associates a collection
of n discrete random variables x = [xi : i ∈ V] ∈ XV =∏
i∈V Xi with the following joint probability distribution:

Pr(x) =
1

Z

∏
α∈E

fα(xα), Z =
∑
x

∏
α∈E

fα(xα),

where Xi = {1, 2, · · · di}, xα = [xi : i ∈ α], F =
{fα}α∈E is a set of non-negative functions called factors,
and Z is the normalizing constant called the partition func-
tion that is computationally intractable.

Algorithm 1 Bucket Elimination (BE)

1: Input: GMM† = (G†,F†) and elimination order o.

2: F ← F†
3: for i in o do
4: Bi ← {fα|fα ∈ F , i ∈ α}
5: Generate new factor fBi\{i} by (1).
6: F ← F ∪ {fBi\{i}} \ Bi
7: end for
8: Output: Z =

∏
fα∈F fα

Mini-bucket elimination. Bucket (or variable) elimination
(BE, Dechter, 1999; Koller & Friedman, 2009) is a proce-
dure for computing the partition function exactly based on
sequential elimination of variables. Without loss of gener-
ality, we assume through out the paper that the elimination
order is fixed o = [1, · · · , n]. BE groups factors by placing
each factor fα in the “bucket” Bi ⊂ F of its earliest argu-
ment i ∈ α appearing in the elimination order o. Next, BE
eliminates the variable by introducing a new factor marginal-
izing the product of factors in it, i.e.,

fBi\{i}(xBi\{i}) =
∑
xi

∏
fα∈Bi

fα(xα). (1)

Here, xBi\{i} abbreviates xV(Bi)\{i}, where V(Bi) indi-
cates the set of variables associated with the bucket Bi. The
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subscript in fBi\{i} represents a similar abbreviation. Fi-
nally, the new function fBi\{i} is added to another bucket
corresponding to its earliest argument in the elimination
order. Formal description of BE is given in Algorithm 1.

One can easily check that BE applies a distributive property
for computing Z exactly: groups of factors corresponding
to buckets are summed out sequentially, and then the newly
generated factor (without the eliminated variable) is added
to another bucket. The computational cost of BE is expo-
nential with respect to the number of uneliminated variables
in the bucket, i.e., its complexity is O

(
dmaxi |V(Bi)||V|

)
.

Here, maxi∈V |V(Bi)| is called the induced width of G given
the elimination order o, and the minimum possible induced
width across all possible o is called the tree-width. Fur-
thermore, we remark that summation of GM over variables
defined on the subset of vertices α, i.e.,

∑
xα

∏
β∈E fβ , can

also be computed via BE in O(dmaxi |V(Bi)|+|V\α||V|) time
by summing out variables in elimination order oα on α.

Mini-bucket elimination (MBE, Dechter & Rish, 2003)
achieves lower complexity by approximating each step of
BE by splitting the computation of each bucket into sev-
eral smaller “mini-buckets”. Formally, for each variable
i in the elimination order o, the bucket Bi is partitioned
into mi mini-buckets {B`i}

mi
`=1 such that Bi =

⋃mi
`=1 B`i and

B`1i ∩ B
`2
i = ∅ for any `1, `2. Next, MBE generates new

factors differently from BE as follows:

fB`i\{i}(xB`i\{i}) = max
xi

∏
fα∈B`i

fα(xα), (2)

for all ` = 1, · · · ,mi − 1 and

fBmii \{i}
(xBmii \{i}

) =
∑
xi

∏
fα∈B

mi
i

fα(xα). (3)

Other steps are equivalent to that of BE. Observe that MBE
replaces the exact marginalization of the bucket in (1) by
its upper bound, i.e.,

∑
xi

∏
fα∈Bi fα ≤

∏m
`=1 fB`i\{i}, and

hence yields an upper bound of Z. We remark that one
could instead obtain a lower bound for Z by replacing max
by min in (2).

Note that one has to choose mini-buckets for MBE carefully
as their sizes typically determine complexity and accuracy:
smaller mini-buckets may be better for speed, but worse
in accuracy. Accordingly, MBE has an additional induced
width bound parameter ibound as the maximal size of a
mini-bucket, i.e., |V(B`i )| ≤ ibound + 1. The time com-
plexity of MBE is O

(
dibound+1|E| ·maxα∈E |α|

)
, since

the maximum number of mini-buckets is bounded by
|E|maxα∈E |α|.

Figure 1. Renormalization process for mini-buckets Ba
1 =

{f12, f13},Bb
1 = {f15, f16} and Bc

1 = {f14}.

3. Mini-Bucket Renormalization
We propose a new scheme, named mini-bucket renormal-
ization (MBR). Our approach approximates BE by splitting
each bucket into several smaller mini-buckets to be “renor-
malized”. Inspired by tensor renormalization groups (TRG,
Levin & Nave, 2007, see also references therein) in the
physics literature, MBR utilizes low-rank approximations to
the mini-buckets instead of simply applying max (or min)
operations as in MBE. Intuitively, MBR is similar to MBE
but promises better accuracy.

3.1. Algorithm Description

For each variable i in the elimination order o, MBR parti-
tions a bucket Bi into mi distinct mini-buckets {B`i}

mi
`=1

with maximal size bounded by ibound. Then for ` =
1, · · · ,mi − 1, mini-bucket B`i is “renormalized” through
replacing vertex i by its replicate i` and then introducing
local factors r`i , ri` for error compensation, i.e.,

B̃`i ← {fα\{i}∪{i`}|fα ∈ B`i} ∪ {r`i , ri`}.

Here, r`i , ri` are local “compensating/renormalizing fac-
tors”, chosen to approximate the factor fB`i =

∏
fα∈B`i

fα
well, where MBE approximates it using (2) and (3). See Fig-
ure 1 for illustration of the renormalization process. Specifi-
cally, the local compensating/renormalizing factors are cho-
sen by solving the following optimization:

min
r`i ,ri`

∑
xB`

i

(
fB`i (xB`i )− f̃B`i (xB`i )

)2

, (4)

where f̃B`i is the factor induced on xB`i from the renormal-

ized mini-bucket B̃`i :

f̃B`i (xB`i ) =
∑
x`i

∏
fα∈B̃`i

fα(xα)

= r`i (xi)
∑
x
i`

ri`(xi`)
∏
fα∈B`i

fα(xi` ,xα\{i}∪{i`}).

We show that (4) can be solved efficiently in Section 3.2.
After all mini-buckets are processed, factors can be summed
over the variables xi1 , · · · , ximi−1 and xi separately, i.e.,
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introduce new factors as follows:

fB`i\{i}(xB`i\{i}) =
∑
x
i`

∏
fα∈B̃`i\{r`i}

fα(xα), (5)

=
∑
x
i`

r`i (xi`)
∏
fα∈B`i

fα(xi` ,xα\{i}∪{i`}),

for ` = 1, · · · ,mi − 1 and

fBmii \{i}
(xBmii \{i}

) =
∑
xi

mi−1∏
`=1

r`i (xi`)
∏

fα∈B
mi
i

fα(xα).

(6)
Resulting factors are then added to its corresponding mini-
bucket and repeat until all buckets are processed, like BE
and MBE. Here, one can check that
mi∏
`=1

fB`i\{i}(xB`i\{i}) =
∑
xi

fBmii
(xBmii

)

mi−1∏
`=1

f̃B`i (xB`i ),

≈
∑
xi

mi∏
`=1

fB`i (xB`i ),

from (4) and MBR indeed approximates BE. The formal
description of MBR is given in Algorithm 2.

Algorithm 2 Mini-bucket renormalization (MBR)

1: Input: GMM† = (G†,F†), elimination order o and
induced width bound ibound.

2: F ← F†
3: for i in o do
4: Bi ← {fα|fα ∈ F , i ∈ α}
5: Divide Bi into mi subgroups {B`i}

mi
`=1 such that

|V(B`i )| ≤ ibound+ 1 for ` = 1, · · · ,mi.
6: for ` = 1, · · · ,mi − 1 do
7: Generate compensating factors r`i , ri` by (4).
8: Generate new factor fB`i\{i} by (5).
9: end for

10: Generate new factor fBmii \{i} by (6).
11: for ` = 1, · · · ,mi do
12: F ← F ∪ {fB`i\{i}} \ B

`
i

13: end for
14: end for
15: Output: Z =

∏
fα∈F fα

3.2. Complexity

The optimization (4) is related to the rank-1 approximation
on fB`i , which can be solved efficiently via (truncated) sin-
gular value decomposition (SVD). Specifically, let M be a
d× d|V(B`i )|−1 matrix representing fB`i as follows:

M

xi, ∑
j∈V(B`i ),j 6=i

xj
∏

k∈V(B`i ),k>j

d

 = fB`i (xB`i ). (7)

Then rank-1 truncated SVD for M solves the following
optimization:

min
r1,r2
‖M− r1r

>
2 M‖F ,

where optimization is over d-dimensional vectors r1, r2

and ‖·‖F denotes the Frobenious norm. Namely, the so-
lution r1 = r2 becomes the most significant (left) sin-
gular vector of M, associated with the largest singular
value.2 Especially, since M is a non-negative matrix, its
most significant singular vector is always non-negative due
to the Perron-Frobenius theorem (Perron, 1907). By let-
ting ri`(x) = r1(x) and r`i (x) = r2(x), one can check
that this optimization is equivalent to (4), where in fact,
ri`(x) = r`i (x), i.e., they share the same values. Due to the
above observations, the complexity of (4) is NSVD(M) that
denotes the complexity of SVD for matrix M. Therefore,
the overall complexity becomes

O (NSV D(M) · T ) = O

(
NSVD(M) · |E| ·max

α∈E
|α|
)
,

where NSVD(M) = O(dibound+2) in general, but typically
much faster in the existing SVD solver.

4. Global-Bucket Renormalization
In the previous section, MBR only considers the local neigh-
borhood for renormalizing mini-buckets to approximate a
single marginalization process of BE. Here we extend the
approach and propose global-bucket renormalization (GBR),
which incorporates a global perspective. The new scheme
re-updates the choice of compensating local factors obtained
in MBR by considering factors that were ignored during the
original process. In particular, GBR directly minimizes the
error in the partition function from each renormalization,
aiming for improved accuracy compared to MBR.

4.1. Intuition and Key-Optimization

Renormalized GMs in MBR. For providing the underlying
design principles of GBR, we first track an intermediate
estimation of the partition function made during MBR by
characterizing the corresponding sequence of renormalized
GMs. Specifically, we aim for constructing a sequence of
T + 1 GMs M(1), · · · ,M(T+1) with T =

∑n
i=1(mi −

1) by breaking each i-th iteration of MBR into mi − 1
steps of GM renormalizations, M(1) is the original GM,
and each transition fromM(t) toM(t+1) corresponds to
renormalization of some mini-bucket B`i to B̃`i . Then, the
intermediate estimation for the original partition function Z
at the t-th step is partition function Z(t) ofM(t) where the
last one Z(T+1) is the output of MBR.

2 r1 = r2 holds without forcing it.
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Figure 2. Example of GM renormalization on complete graph with size |V| = 6 corresponding to execution of MBR with elimination
order o = 1, · · · , 6 and ibound = 2. Here, pairwise factors between variables are assumed to exist inside edges. Partition function of
final GM is able to be computed from BE with induced width 2 and elimination order õ = [1a, 1b, 1, 2a, 2, 3a, 3, 4, 5, 6].

To this end, we introduce “scope” for each factor fα appear-
ing in MBR to indicate which parts of GM are renormalized
at each step. In particular, the scope Sfα = (Gfα ,Ffα)
consists of a graph Gfα = (Vfα , Efα) and set of factors Ffα
that are associated to fα as follows:

fα(xα) =
∑

xVfα\α

∏
fβ∈Ffα

fβ(xβ).

Initially, scopes associated with initial factors are defined
by themselves, i.e.,

Sfα ← ((α, {α}), {fα}), (8)

for each factor fα of M(1), and others of M(t) =
((V(t), E(t)),F (t)) with t ≥ 2 are to be defined iteratively
under the MBR process, as we describe in what follows.

Consider the t-th iteration of MBR, where mini-bucket B`i is
being renormalized into B̃`i . Then scope Sf for all f ∈ B`i
goes through renormalization by replacing every i in the
scope by i` as follows:

S̃f ← (Vf \ {i}∪{i`}, {ᾱ|α ∈ Ef}, {fᾱ|fα ∈ Ff}), (9)

where ᾱ =

{
α \ {i} ∪ {i`} if i ∈ α

α otherwise
. Then, the re-

spective GM is renormalized accordingly for the change
of scopes, in addition to compensating factors r`i , ri` :

V(t+1) ← V(t) ∪ {i`},

E(t+1) ← E(t) \ EB`i ∪ ẼB`i ∪ {{i}, {i
`}}, (10)

F (t+1) ← F (t) \ FB`i ∪ F̃B`i ∪ {r
`
i , ri`},

where EB`i = ∪f∈B`iEf , and other union of scope compo-

nents ẼB`i ,VB`i , ṼB`i ,FB`i , F̃B`i are defined similarly. Finally,
scope SfB`

i
\{i}

for newly generated factors fB`i\{i} is

SfB`
i
\{i}
← ((ṼB`i , ẼB`i ∪ {{i

`}}), F̃B`i ∪ {ri`}). (11)

Furthermore, if ` = mi − 1, we have

SfBmi
i
\{i}
← ((VBmii , EBmii ∪ {{i}}),FBmii ∪ {r

`
i}
mi−1
`=1 ).

(12)

This is repeated until the MBR process terminates, as for-
mally described in Algorithm 3. By construction, the output
of MBR is equal to the partition function of the last GM
M(T+1), which is computable via BE with induced width
smaller than ibound+ 1 given elimination order

õ = [11, · · · , 1m1−1, 1, · · · , n1, · · · , nmn−1, n]. (13)

See Algorithm 3 for the formal description of this process,
and Figure 2 for an example.

Optimizing intermediate approximations. Finally, we
provide an explicit optimization formulation for minimizing
the change of intermediate partition functions in terms of
induced factors. Specifically, for each t-th renormalization,
i.e., fromM(t) toM(t+1), we consider change of the fol-
lowing factor fi induced from global-bucketF (t) to variable
xi in a “skewed” manner as follows:

fi(x
(1)
i , x

(2)
i ) :=

∑
xV(t)\{i}

∏
fα∈FB`

i

fα(x
(1)
i ,xα\{i})

·
∏

fα∈F(t)\FB`
i

fα(x
(2)
i ,xα\{i}),

where x(1)
i , x

(2)
i are the newly introduced “split variables”

that are associated with the same vertex i, but allowed to
have different values for our purpose. Next, the bucket F (t)

is renormalized into F (t+1), leading to the induced factor
of f̃i defined as follows:

f̃i(x
(1)
i , x

(2)
i ) :=

∑
xV(t+1)\{i}

∏
fα∈F̃B`

i
∪{r`i ,ri`}

fα(x
(1)
i ,xα\{i})

·
∏

fα∈F(t+1)\F̃B`
i
\{r`i ,ri`}

fα(x
(2)
i ,xα\{i})

=r`i (x
(1)
i )

∑
x
i`

ri`(xi`)fi(xi` , x
(2)
i ).

Then change in fi is directly related with change in partition
function since Z(t−1) and Z(t) can be described as follows:

Z(t−1) =
∑
xi

fi(xi, xi), Z(t) =
∑
xi

f̃i(xi, xi).
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Consequently, GBR chooses to minimize the change in fi
by re-updating r`i , ri` , i.e., it solves

min
r`i ,ri`

∑
x
(1)
i ,x

(2)
i

(
fi(x

(1)
i , x

(2)
i )− f̃i(x(1)

i , x
(2)
i )

)2

. (14)

However, we remark that (14) is intractable since its objec-
tive is “global”, and requires summation over all variables
except one, i.e., xV(t)\{i}, and this is the key difference
from (4) which seeks to minimize the error described by the
local mini-bucket. GBR avoids this issue by substituting fi
by its tractable approximation gi, which is to be described
in the following section.

Algorithm 3 GM renormalization

1: Input: GMM† = (G†,F†), elimination order o and
induced width bound ibound.

2: M(1) ←M†
3: Run Algorithm 2 with inputM(1), o, ibound to obtain

mini-buckets B`i and compensating factors r`i , ri` for
i = 1, · · · , n and ` = 1, · · · ,mi.

4: for f ∈ F (1) do
5: Assign scope Sf for f by (8).
6: end for
7: for i in o do
8: for ` = 1, · · · ,mi − 1 do
9: for f ∈ B`i do

10: Renormalize scope Sf for f into S̃f by (9).
11: end for
12: Set t =

∑i−1
j=1(mi − 1) + `.

13: Renormalize GMM(t) intoM(t+1) by (10).
14: Assign scope SfB`

i
\{i}

for factor fB`i\{i} by (11).
15: end for
16: Assign scope SfBmi

i
\{i}

for factor fBmii \{i} by (12).
17: end for

18: Output: Final GMM(T+1) with T =
∑n
i=1(mi − 1).

4.2. Algorithm Description

In this section, we provide a formal description of GBR.
First, consider the sequence of GMs M(1), · · · ,M(T+1)

from interpreting MBR as GM renormalizations. This cor-
responds to T choices of compensating factors made at
each renormalization, i.e., r(1), · · · , r(T ) where r(t)(x) =
r`i (x) = ri`(x) for the associated replicate vertex i`. GBR
modifies this sequence iteratively by replacing intermediate
choice of compensation r(t) by another choice s(t)(x) =
s`i(x) = si`(x) in reversed order, approximately solving
(14) until all compensating factors are updated. Then, GBR
outputs partition function Z(T+1) forM(T+1) as an approx-
imation of the original partition function Z.

Now we describe the process of choosing new compensating
factors s`i , si` at t′-th iteration of GBR by approximately
solving (14). To this end, the t′-th choice of compensating
factors are expressed as follows:

r(1), · · · , r(t), s(t+1), · · · , s(T ), (15)

with t = T − t′ + 1 and s(t+1), · · · , s(T ) already chosen
in the previous iteration of GBR. Next, consider sequence
of GMs M̂(1), · · · ,M̂(T+1) that were generated similarly
with GM renormalization corresponding to MBR, but with
compensating factors chosen by (15). Observe that the first
t renormalizations of GM correspond to those of MBR since
the updates are done in reverse order, i.e., M̂(t′) =M(t′)

for t′ < t + 1. Next, fi in (4) is expressed as summation
over x`

V̂(t+1)\{i,i`}
in M̂(t+1), defined as follows:

fi(xi` , xi) =
∑

xV̂(t+1)\{i,i`}

∏
fα∈F̂(t+1)\{r`i ,ri`}

fα(xα).

Since fi resembles the partition function in a way that it is
also a summation over GM with small change in a set of
factors, i.e., excluding local factors r`i , ri` , we expect fi to
be approximated well by a summation gi over xV̂(T+1)\{i,i`}

in M̂(T+1):

gi(xi` , xi) :=
∑

xV̂(T+1)\{i,i`}

∏
fα∈F̂(T+1)\{r`i ,ri`}

fα(xα),

which can be computed in O(|E|dibound+2) complexity via
appying BE in M̂(T+1) with elimination order õ \ {i, i`} as
in (13). Then the following optimization is obtained as an
approximation of (14):

min
s`i ,si`

∑
x
(1)
i ,x

(2)
i

(
gi(x

(1)
i , x

(2)
i )− g̃i(x(1)

i , x
(2)
i )

)2

, (16)

where g̃i corresponds to renormalized factor f̃i:

g̃i(xi` , xi) := s`i(xi`)
∑
x
i`

si`(xi`)gi(xi` , xi).

As a result, one can expect choosing compensating factors
from (16) to improve over that of (4) as long as MBR pro-
vides reasonable approximation for fi. The optimization
is again solvable via rank-1 truncated SVD and the overall
complexity of GBR is

O

(
dibound+2NSVD(Mglobal) · |E|2 ·max

α∈E
|α|2

)
,

where NSVD(Mglobal) = O(d3) is the complexity for per-
forming SVD on d× d matrix Mglobal representing function
g as in (7). While the formal description of GBR is concep-
tually a bit complicated, one can implement it efficiently.
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Specifically, during the GBR process, it suffices to keep
only the description of renormalized GMM(T+1) with an
ongoing set of compensating factors, e.g., (15), in order to
update compensating factors iteratively by (16). The formal
description of the GBR scheme is provided in Algorithm 4.

Algorithm 4 Global-Bucket Renormalization (GBR)

1: Input: GMM† = (G†,F†), elimination order o and
induced width bound ibound.

2: Run Algorithm 3 with inputM†, o, ibound to obtain
renormalized GMM and compensating factors r`i for
i = 1, · · · , n and ` = 1, · · · ,mi.

3: Set the renormalized elimination order as follows:

õ = [11, · · · , 1m1−1, 1, · · · , n1, · · · , nmn−1, n].

4: for i` = nmn−1, · · · , n1, · · · , 1m1−1, · · · , 11 do
5: Generate s`i , s

`
i by solving

min
s`i ,si`

∑
x
(1)
i ,x

(2)
i

(
gi(x

(1)
i , x

(2)
i )− g̃i(x(1)

i , x
(2)
i )

)2

,

6: where gi, g̃i is defined as follows:

gi(xi` , xi) =
∑

xV\{i,i`}

∏
fα∈F\{r`i ,ri`}

fα(xα),

g̃i(xi` , xi) = s`i(xi`)
∑
x`i

si`(x
`
i)gi(x

`
i , xi),

with its computation done by BE with elimination
order of õ \ {i, i`}.

7: Update GMM by F ← F \ {r`i , ri`} ∪ {s`i , si`}.
8: end for
9: Get Z =

∑
x

∏
fα∈F fα(xα) via BE with elimination

order õ.
10: Output: Z

5. Experimental Results
In this section, we report experimental results on perfor-
mance of our algorithms for approximating the partition
function Z. Experiments were conducted for Ising mod-
els defined on grid-structured and complete graphs as well
as two real-world datasets from the UAI 2014 Inference
Competition (Gogate, 2014). We compare our mini-bucket
renormalization (MBR) and global-bucket renormalization
(GBR) scheme with other mini-bucket algorithms, i.e., mini-
bucket elimination (MBE) by Dechter & Rish (2003) and
weighted mini-bucket elimination (WMBE) by Liu & Ihler
(2011). Further, we also run the popular variational infer-
ence algorithms: mean-field (MF), loopy belief propagation

(BP) and generalized belief propagation (GBP) by Yedidia
et al. (2001). For all mini-bucket algorithms, we unified
the choice of elimination order for each instance of GM
by applying min-fill heuristics (Koller & Friedman, 2009).
Further, WMBE used additional fixed point reparameteriza-
tion updates for improving its approximation, as proposed
by Liu & Ihler (2011) and GBP was implemented to use
the same order of memory as the mini-bucket algorithms
for given ibound. See the supplementary material for more
details on implementations of the algorithms. For perfor-
mance measure, we use the log-partition function error, i.e.,
| log10 Z − log10 Zapprox| where Zapprox is the approximated
partition function from a respective algorithm.

Ising models. We first consider the most popular bi-
nary pairwise GMs, called Ising models (Onsager, 1944):
p(x) = 1

Z exp
(∑

i∈V φixi +
∑

(i,j)∈E φijxixj

)
, where

xi ∈ {−1, 1}. In our experiments, we draw φij and φi
uniformly from intervals of [−∆,∆] and [−0.1, 0.1] respec-
tively, where ∆ is a parameter controlling the ‘interaction
strength’ between variables. As ∆ grows, the inference
task is typically harder. Experiments were conducted in two
settings: complete graphs with 15 variables (105 pairwise
factors), and 15 × 15 non-toroidal grid graphs (225 vari-
ables, 420 pairwise factors). Both settings have moderate
tree-width, enabling exact computation of the partition func-
tion using BE with induced widths of 15 and 16, respectively.
We vary the interaction strength ∆ and the induced width
bound ibound (for mini-bucket algorithms and GBP), where
ibound = 10 and ∆ = 1.0 are the default choices. For each
choice of parameters, results are obtained by averaging over
100 random model instances.

As shown in Figure 3a-d, both MBR and GBR perform im-
pressively compared to MF and BP. Somewhat surprisingly,
GBR outperforms GBP and even MBR is not worse than
GBP although GBP (using the same order of memory) is
more expensive to run due to its iterative nature. Next, the
relative benefit of our methods compared to the earlier ap-
proaches increases with ∆ (more difficult instances), and as
the bound of induced width gets smaller. This suggests that
our methods scale well with the size and difficulty of GM.

In Figure 3c, where ibound is varied for complete graphs,
we observe that GBR does not improve over MBR when
ibound is small, but does so after ibound grows large. This
is consistent with our expectation that in order for GBR to
improve over MBR, the initial quality of MBR should be
acceptable. Our experimental setup on Ising grid GMs with
varying interaction strength is identical to that of Xue et al.
(2016), where they approximate variable elimination in the
Fourier domain. Comparing results, one can observe that
our methods significantly outperform their prior algorithm.

Figure 3e reports the trade-off between accuracy and elapsed
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(a) Complete graph, |V| = 15 (b) Grid graph, 15× 15 (c) Complete graph, |V| = 15 (d) Grid graph, 15× 15

(e) Complete graph, |V| = 15 (f) Promedus dataset (g) Linkage dataset

Figure 3. Performance comparisons under (a, b) varying interaction strength parameter ∆, and (c, d) induced width bound ibound. Ising
models are either defined on (a, c) complete graphs with |V| = 15 or (b, d) grid graphs with |V| = 225. Each plot is averaged over 100
models. (e) reports the averaged error versus elapsed time while varying ibound in the same setting as (d), where number labels by points
indicate the corresponding ibound used. Numbers in brackets, e.g., MBR(19), count the instances of each algorithm to win in terms of
approximation accuracy under (f) Promedus and (g) Linkage datasets.

time with varying ibound. Here, we observe that both MBR
and GBR are faster than WMBE and any of the variational
inference algorithms. Further, we also note that increasing
ibound does not necessarily lead to slower running time,
while the accuracy is improved. This is because smaller
ibound increases the number of mini-buckets and the corre-
sponding updates.

UAI datasets. We further show results of real-world mod-
els from the UAI 2014 Inference Competition, namely the
Promedus (medical diagnosis) and Linkage (genetic link-
age) datasets, consisting of 28 and 17 instances of GMs
respectively. More details of the datasets are provided in
the supplementary material. Again, induced width bounds
are set to ibound = 10. The experimental results are sum-
marized in Figure 3f and 3g. Results for MF were omitted
since MF was not able to run on these instances by its con-
struction. First, in Promedus dataset, i.e., Figure 3f, MBR
and GBR clearly dominates over all other algorithms. Even
when GBR fails to improve MBR, it still outperforms other
algorithms. Next, in Linkage dataset, i.e., 3g, MBR and
GBR are often outperformed by GBP where the latter is
significantly (often 100×) more expensive to run than the
formers. Typically, MBR and GBR are nearly as good as
GBP. They outperform all mini-bucket variants and BP.

Guide for implementation. Based on the experiments, we

provide useful recommendations for application of MBR
and GBR. First, we emphasize that using the min-fill heuris-
tics for choosing the appropriate elimination order can im-
prove the performance of MBR and GBR (see the supple-
mentary material). Whenever memory is available, running
MBR with increased ibound typically leads to better trade-
off between complexity and performance than running GBR.
When memory is limited, GBR is recommended for improv-
ing the approximation quality without additional memory.

6. Conclusion and Future Work
We developed a new family of mini-bucket algorithms, MBR
and GBR, inspired by the tensor network renormalization
framework in statistical physics. The proposed schemes ap-
proximate the variable elimination process efficiently by re-
peating low-rank projections of mini-buckets. Extensions to
higher-order low-rank projections (Xie et al., 2012; Evenbly,
2017) might improve performance. GBR calibrates MBR
via minimization of renormalization error for the partition
function explicitly. A similar optimization was considered
in the so-called second-order renormalization groups (Xie
et al., 2009; 2012). Hence, there is scope to explore poten-
tial variants of GBR. Finally, another direction to generalize
MBR is to consider larger sizes of buckets to renormalize,
e.g., see (Evenbly & Vidal, 2015; Hauru et al., 2018).
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