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Abstract

Computing the partition function Z of a dis-
crete graphical model is a fundamental infer-
ence challenge. Since this is computationally
intractable, variational approximations are
often used in practice. Recently, so-called
gauge transformations were used to improve
variational lower bounds on Z. In this pa-
per, we propose a new gauge-variational ap-
proach, termed WMBE-G, which combines
gauge transformations with the weighted
mini-bucket elimination (WMBE) method.
WMBE-G can provide both upper and lower
bounds on Z, and is easier to optimize than
the prior gauge-variational algorithm. We
show that WMBE-G strictly improves the
earlier WMBE approximation for symmetric
models including Ising models with no mag-
netic field. Our experimental results demon-
strate the effectiveness of WMBE-G even for
generic, nonsymmetric models.

1 INTRODUCTION

Graphical Models (GMs) express the factorization of
the joint multivariate probability distribution over sub-
sets of variables via graphical relations among them.
GMs have been developed in information theory [1, 2],
physics [3, 4, 5, 6, 7], artificial intelligence [8], and
machine learning [9, 10]. For a GM, computing the
partition function Z (the normalization constant) is a
fundamental inference task of great interest. However,
this task is known to be computationally intractable
in general: it is #P-hard even to approximate [11].
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Variational approaches frame the inference task as an
optimization problem, which is typically solved approx-
imately. Key challenges for variational methods are to
scale efficiently with the number of variables; and to
try to provide guaranteed upper or lower bounds on Z.

Popular variational methods include: the mean-field
(MF) approximation [6], which provides a lower bound
on Z; the tree-reweighted (TRW) approximation [12],
which provides an upper bound; and belief propaga-
tion (BP) [13], which often performs well but provides
neither an upper nor lower bound in general. Other
variational methods have been investigated for pro-
viding lower bounds [14, 15, 16, 17] or upper bounds
[15, 16, 17] for approximamting Z.

Methods using reparametrizations [18], gauge transfor-
mations (GT) [19, 20] or holographic transformations
(HT) [21, 22] have been explored. These methods each
consider modifying the base GM by transforming the
potential factors in various ways, aiming to simplify
the inference task, while keeping the partition function
Z unchanged. We call these methods collectively Z-
invariant methods. See [23, 24, 25] for discussions of
the differences and relations between these methods.

An approach to combine variational and Z-invariant
methods was recently introduced by [26], yielding a
lower bound on Z. They proposed gauge-variational
optimization formulations built upon MF and BP, incor-
porating the generic IPOPT solver [27] as an essential
inner optimization routine. Here we introduce a new
gauge-variational optimization approach, using varia-
tional methods other than MF and BP, and employing
a specialized solver for inner optimization which is more
efficient than IPOPT. Further, our new approach yields
lower and upper bounds on Z.

Contribution. We develop a new family of gauge-
variational algorithms combining the methods of gauge
transformations (GTs) and weighted mini-bucket elim-
ination (WMBE) [16]. The significance of our new
approach, which we call WMBE-G, is twofold:
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C1. We introduce optimization formulations which pro-
vide both upper and lower bounds of Z by gener-
alizing the original WMBE bounds to incorporate
GTs. The authors [16] use the re-parameterization
framework, which is a distribution-invariant
method that is a strict sub-class of GTs. Hence,
our formulations explore a strictly larger freedom
in optimization, which we observe typically leads
to significantly better bounds in practice. Indeed,
we provide an analytic class of GMs (symmetric bi-
nary GMs including Ising models with no magnetic
field) where ours provide strictly better results.

C2. We propose a novel optimization solver alternating
between gauges and factors to minimize (or maxi-
mize) the proposed objectives, and demonstrate its
computational advantages. We remark that the
earlier optimization approaches in [26] required
‘non-negativity’ constraints which are tricky to
handle, while we do not. [26] addresses the chal-
lenge using the generic IPOPT solver with the
log-barrier method, but it is not clear if this will
scale well for large instances. On the other hand,
our proposed algorithms are clearly scalable since
they solve purely unconstrained optimizations in
a distributed manner.

Our experimental results show that WMBE-G has su-
perior performance in comparison with other known
algorithms, including WMBE. We remark that the
main contribution of WMBE [16] was to introduce
Hölder weights to improve the original mini-bucket
elimination (BE) bound [28], whereas we additionally
optimize gauges for even better performance. In our ex-
periments, we observe that the contribution of Hölder
weights is relatively marginal compared to gauges in
optimizing the BE bound (see Section 4 for more de-
tails). Namely, we found that gauges are more crucial
than Hölder weights for better approximation to Z,
while the computational costs of optimizing them are
similar. In this paper, we mainly focus on WMBE-G
using the Hölder inequality to obtain an upper bound
on Z, but a lower bound can be similarly derived using
the reverse Hölder inequality (see Section 2.3).

2 PRELIMINARIES

2.1 Graphical Models

Factor-graph GM. We consider an undirected, bipar-
tite factor graph G = (V,E) with vertices V = X ∪ F
comprising variables X and factors F , and edges be-
tween variable and factor nodes E ⊆ X × F . Each
random variable xv ∈ X is discrete, taking values in

Figure 1: Example of transformation from the factor-
graph GM (left) to the Forney-style GM (right).
Squares and circles indicate factors and variables re-
spectively. New factors denoted as ‘=’ force adjoining
variables be consistent, i.e., have the same value.

{1, · · · , d}. The distribution factorizes as follows:

p(x) =
1

Z

∏
α∈F

fα(xα). (1)

Here, F = {fα}α∈F is a set of non-negative functions
called factors, and xα is the subset of variables for
factor α, i.e., xα = [xv : v ∈ N(α)] with N(α) = {v :
(v, α) ∈ E}. The normalization constant

Z :=
∑
x

∏
α∈F

fα(xα)

is called the partition function. It is well known that
the partition function is computationally intractable
in general: it is #P-hard even to approximate [11].

Forney-style GM. For ease of notation in dealing
with GTs, throughout this paper we shall assume
Forney-style GMs [29]. These ensure that every vari-
able has two adjacent factors, i.e., |N(v)| = 2 ∀ v ∈ X.
As shown in [19, 20], Forney-style GMs provide a more
compact description of gauge transformations without
any loss of generality: given any factor-graph GM, one
can construct an equivalent Forney-style GM [30]. See
Figure 1 for an example.

2.2 Gauge Transformations

Gauge transformations [19, 20] are a family of linear
transformations of the factor functions in (1) which
leave the the partition function Z invariant. GTs are
defined by the following set of invertible d× d matrices
{Gvα : (v, α) ∈ E}, termed gauges:

Gvα =

 Gvα(1, 1) · · · Gvα(1, d)
...

. . .
...

Gvα(d, 1) · · · Gvα(d, d)

 .
The transformed GM with respect to the gauges G =
{Gvα : (v, α) ∈ E} consists of modified factors {f̂α :
α ∈ F} computed as follows:

f̂α(xα;Gα) =
∑
x′α

fα(x′α)
∏

v∈N(α)

Gvα(xv, x
′
v), (2)
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where Gα = {Gvα : v ∈ N(α)}. Here, the gauges must
satisfy the following gauge constraints:

G>vαGvβ = I, ∀v ∈ X, (3)

where I is the identity matrix and N(v) = {α, β} (recall
that we assume |N(v)| = 2). With these constraints,
the partition function is known to be invariant under
the transformation [19, 20], i.e.,

Z =
∑
x

∏
α∈F

fα(xα) =
∑
x

∏
α∈F

f̂α(xα;Gα).

Thus gauges lead to the transformed distribution
p(x;G) =

∏
α∈F f̂α(xα;Gα)/Z. We remark that it

might be invalid when f̂α(xα;Gα) is negative. Nev-
ertheless, even in this case, the partition function in-
variance still holds. We provide an example of a gauge
transformation in the Supplement.

2.3 Weighted Mini-Bucket Elimination

Bucket (or variable) elimination (BE) [31, 32] is a
method for computing the partition function exactly
based on directly summing out the variables sequen-
tially. First, BE assumes a fixed elimination ordering
o = [v1, · · · , vn] among variables nodes v ∈ X. Then
BE groups factors by placing each factor fα in the
“bucket” Bv of its earliest argument v ∈ N(α) appear-
ing in the elimination order o. Next, BE eliminates the
variable by marginalizing the product of factors in the
bucket, i.e.,

fBv (xBv ) =
∑
xv

∏
fα∈Bv

fα(xα) ∀ xBv , (4)

where xBv = [xu : u ∈ var(Bv), u 6= v] and var(Bv)
indicates the subset of variables in the bucket. Finally,
the newly generated function fBv is inserted into an-
other bucket corresponding to its earliest argument in
the elimination order. This process is easily seen as
applying a distributive property: groups of factors cor-
responding to buckets are summed out sequentially, and
then the newly created factor (without the eliminated
variable) is assigned to another bucket.

The computational cost of BE is exponential in the
number of uneliminated variables in the bucket, i.e.,
the induced width1 of the graph given the elimination
order. BE is summarized in Algorithm 1.

Mini-bucket elimination (MBE) [28] and weighted mini-
bucket elimination (WMBE) [16] approximate BE by
splitting computation of each bucket into several “mini-
buckets”, where WMBE additionally makes use of
Hölder’s inequality [33]. Since MBE is a special case
of WMBE (by choosing extreme Hölder weights), here
we focus on providing background for WMBE.

1The minimum possible induced with is called tree-width.

Algorithm 1 BE for computing Z

1: Input: GM on graph G = (V,E) with V = (X,F )
and factors F = {fα}α∈F and elimination order
o = [v1, · · · , vn].

2: F ′ ← F
3: for v in o do
4: Bv ← {fα|fα ∈ F , v ∈ N(α)}
5: Generate new factor by:

fBv (xBv ) =
∑
xv

∏
fα∈Bv

fα(xα), ∀ xBv .

6: F ′ ← F ′ ∪ {fBv} −Bv
7: end for
8: Output: Z =

∏
fα∈F ′ fα

Algorithm 2 WMBE for bounding Z

1: Input: GM on graph G = (V,E) with V =
(X,F ), factors F = {fα}α∈F , elimination order
o = [v1, · · · , vn] and bound on bucket size ibound.

2: F ′ ← F
3: for v in o do
4: Bv ← {fα|fα ∈ F ′, v ∈ ∂α}
5: Partition Bv into Rv subgroups {Brv}

Rv
r=1 such

that |var(Brv)| ≤ ibound for all r.
6: Assign weights w1, · · · , wRv while satisfying∑

r wr = 1.
7: for r ← 1, · · · , Rv do
8: Generate a new factor by:

fBrv (xBrv ) =

wr
◦
◦

∑
xv

∏
fα∈Brv

fα(xα), ∀ xBv .

9: F ′ ← F ′ ∪ {fBrv} −B
r
v

10: end for
11: end for
12: Output: ZWMBE =

∏
fα∈F ′ fα

Let {ψi(x), i = 1, · · · ,m} be some functions defined
on discrete variable x, and w = [w1, · · ·wn] be a vec-
tor of Hölder weights. We define a weighted absolute
summation, given by

wi
◦
◦

∑
x

ψi(x) :=
(∑

x

|ψi(x)|1/wi
)wi

.

Equivalently,
∑

◦
◦
wi
x is the Schatten p-norm with p =

1/wi. If wi > 0 for all i ≥ 1, then Hölder’s inequality
implies that

w0

◦
◦

∑
x

m∏
i=1

ψi(x) ≤
m∏
i=1

wi
◦
◦

∑
x

ψi(x), (5)
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where w0 =
∑
i wi. If only one weight is positive, e.g.,

w1 > 0 and wi < 0 for all i > 1, we have the reverse
Hölder’s inequality:

w0

◦
◦

∑
x

m∏
i=1

ψi(x) ≥
m∏
i=1

wi
◦
◦

∑
x

ψi(x). (6)

WMBE modifies BE by applying Hölder’s inequality
whenever the size of a bucket, i.e., length of xBv , ex-
ceeds some given parameter called ibound. In this case,
WMBE splits the bucket into multiple ‘mini-buckets’,
and weighted absolute summation is evaluated sequen-
tially in place of (4), i.e.,

∑
xv

∏
fα∈B

|fα(xα)| ≤
Rv∏
r=1

wr
◦
◦

∑
xv

∏
fα∈Brv

fα(xα),

for all xBv , where Hölder weights satisfy
∑
r wr =

1, wr > 0, Bv =
⋃
r B

r
v , and Brv is disjoint for all r. We

then generate multiple new factors by:

fBrv (xBrv ) =

wr
◦
◦

∑
xv

∏
fα∈Brv

fα(xα), ∀ xBv ,

and insert into other buckets. By construction, WMBE
yields an upper bound for the partition function Z.
One can use the same idea to derive a lower bound for
Z using the reverse Hölder’s inequality. We summarize
WMBE in Algorithm 2.

One can interpret MBE as a special case of WMBE by
assigning a single weight to be close to 1 and others
to be close to 0, i.e., w = limw→0+ [1 − w,w,w, · · · ].
Instead, Liu and Ihler [16] optimize the Hölder weights
so that WMBE can outperform MBE, which we discuss
further in Section 3.

3 GAUGED WMBE ALGORITHM

In this section, we describe our gauge optimization
scheme WMBE-G to improve the previous WMBE
bound, yielding gauranteed upper bound approxima-
tions for the partition function Z. Our scheme improves
the standard WMBE bound by searching over the large
family of gauge transformed (possibly invalid) GMs to
find the tightest WMBE bound possible.

3.1 Key Optimization Formulation

In order to describe the optimization formulation for
tightening the WMBE bound, we first observe that (8)
can be reformulated into∑
xv

∏
fα∈B

|fα(xα)| ≤
w1∑
x

(1)
v

· · ·
wRv
◦
◦

∑
x

(Rv)
v

Rv∏
r=1

∏
α∈Brv

fα(xα\v, x
(r)
v )

(7)

where xα\v = [xu : u ∈ N(α), u 6= v]. While notation is
complex, this is simply applying the distributive prop-
erty on the right hand side of (8). The procedure can
be seen as ‘splitting’ variable from xv to x(1)

v , · · ·x(Rv)
v

and its associated node from v to v(1), · · · v(Rv) so that
factors no longer share the split variable. We remark
that under Forney-style GMs, Rv ≤ 2 since exactly 2
factors are associated with a variable. After repeat-
edly applying the inequality, we arrive at the following
WMBE bound, termed weighted partition function:

Z ≤ ZWMBE =

w̄n̄
◦
◦

∑
x̄1̄

· · ·
w̄1

◦
◦

∑
x̄1

∏
α∈F

fα(x̄α). (8)

In (8), x̄ = [x̄1, · · · , x̄n̄] and w̄ = [w̄1, · · · , x̄n̄] indi-
cate the ‘split’ version of variables and associated
Hölder weights, indexed by appearance of associ-
ated node in the modified elimination order ō =
[v

(1)
1 , · · · v(Rv1 )

1 , · · · , v(1)
n , · · · v(Rvn )

n ]. Therefore, the
WMBE bound can be seen as a weighted absolute sum-
mation over product of factors in a new GM. However,
unlike the original partition function, the weighted abso-
lute summation is tractable with respect to ibound since
at most dibound terms are counted for each weighted
absolute summation, or equivalently variable elimina-
tion of mini-buckets. Finally, we are able to present
our main optimization formulation:

minimize
G

w̄n̄
◦
◦

∑
x̄n̄

· · ·
w̄1

◦
◦

∑
x̄1

∏
α∈F

f̂α(x̄α;Gα), (9)

subject to G>vαGvβ = I, ∀ v ∈ X,N(v) = {α, β}.

3.2 Algorithm Description

We now describe an efficient algorithm to optimize (9).
First, the gauge constraint can be removed simply by
expressing one (of the two) gauges in terms of the other,
e.g., Gvβ via (G>vα)−1. Then, (9) can be optimized via
any type of unconstrained optimization solver. Here,
we optimize gauges by gradient descent followed by
additional updates on factor values.

To this end, we initialize gauges by identity matrices,
which immediately yields the original WMBE bound
from (8) since fα(xα) = f̂α(xα; Iα), where Iα = [Gvα =
I : (v, α) ∈ E]. Next, under expressing gauges via
one another, i.e., Gvβ ←

(
G>vα

)−1, we update each
gauge element by gradient descent for minimization
of the weighted log partition function upper bound
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logZWMBE as follows:

Gvα(x′v, x
′′
v) ← Gvα(x′v, x

′′
v)− µ ∂ logZWMBE

∂Gvα(x′v, x
′′
v)

∂ logZWMBE

∂Gvα(x′v, x
′′
v)

=
∑
x̄α\v

q(x̄α\v, x
′′
v)
fα(x̄α\v, x

′
v)

fα(x̄α\v, x′′v)

−
∑
x̄β\v

q(x̄β\v, x
′
v)
fβ(x̄β\v, x

′′
v)

fβ(x̄β\v, x′v)
, (10)

where µ is the step size2, xα\v = [xu : u ∈ N(α), u 6= v]
and q is an ‘auxiliary distribution’ defined as

q(x̄) =

n̄∏
k=1

q(x̄k|x̄k+1:n̄),

q(x̄k|x̄k+1:n) ∝

w̄k−1

◦
◦

∑
x̄k−1

· · ·
w̄1

◦
◦

∑
x̄1

∏
α∈F

fα(x̄α)

1/w̄k

.

We also update Gvβ ← (G>vα)−1 and the value of as-
sociated factors by the gauge-transformed factors, i.e.,

fα(xα)← f̂α(xα;Gα), (11)

and similarly for fβ . Finally, for the next iteration, we
reset Gvα ← I.

The above update leads to an improved WMBE bound,
which can be repeated for better bounds (until con-
vergence). Each iteration t = 1, . . . T results in a se-
quence of gauges G(t) obtained by (10), and factors
f

(t)
α obtained by (11) can be expressed as f (t)

α (xα) =

f̂
(0)
α (xα;G′α), where f (0)

α = fα is the original GM factor,
and G′α consists of gauges G′vα = G

(t+1)
vα G

(t)
vα · · ·G(1)

vα

for v ∈ N(α). We remark that one can use naïve
gradient descent, i.e., update gauges only (without
resetting to identity matrices), instead of factors as
in (11). However, by utilizing the additional factor
updates, the gradient formulation is simplified and re-
dundant computations of gauge transformations are
reduced. We summarize the above update procedure
in Algorithm 3.

Furthermore, one can utilize ideas from [16] in order
to improve the efficiency and power of the proposed
optimization. First, computation of auxiliary marginals
q(xα) in (10) can be efficiently carried out by a message-
passing scheme proposed by the authors. Moreover, one
can jointly optimize the Hölder weights w̄ in addition to
G using the auxiliary distribution during optimization
of (9). In our experiments, we utilize both the message-
passing algorithm and the joint optimization involving
w̄ using the log-gradient step proposed by the authors.

Finally, we remark that the elimination order and
bucket split strategy might be another freedom that

2See Section 4 for details of our choice of step size.

one may exploit in order to tighten the WMBE bound.
However, their optimizations are hard (see [16]). Hence,
we choose the elimination order arbitrarily in our ex-
periments. For the bucket split strategy, if one as-
sumes Forney-style GMs, any strategy reduces into a
fixed split process, i.e., whenever ibound is exceeded,
a variable x is always split in two parts x(1), x(2), and
adjacent factors are assigned separately.

Algorithm 3 Gauged WMBE for bounding Z

1: Input: GM on graph G = (V,E) with V =
(X,F ), factors F = {fα}α∈F , elimination order
o = [v1, · · · , vn] and bound on bucket size ibound.

2: F ′ ← F
3: ō← ∅, w̄ ← ∅.
4: Initialize by ō = ∅, w̄ = ∅.
5: for v in o do
6: Bv ← {fα|fα ∈ F ′, v ∈ N(α)}
7: Partition Bv into Rv subgroups {Brv}

Rv
r=1 such

that |var(Brv)| ≤ ibound for all r.
8: Assign weights w1, · · · , wRv while satisfying∑

r wr = 1.
9: for r ← 1, · · · , Rv do

10: Generate a new factor by:

fBrv (xBrv ) =

wr
◦
◦

∑
xv

∏
fα∈Brv

fα(xα), ∀ xBv .

11: F ′ ← F ′ ∪ {fBrv} −B
r
v

12: end for
13: Extend ō by [v(1), · · · , v(Rv)]
14: Extend w̄ by [w1, · · · , wRv ]
15: end for
16: Initialize by Gvα = I for all (v, α) ∈ E.
17: for t = 1, 2, · · · , T do
18: for v in X with N(v) = {α, β} do
19: Update Gvα by (10).
20: Gvβ ← (G>vα)−1

21: Set fα(xα) ← f̂α(xα;Gα) and fα(xα) ←
f̂α(xα;Gα) for all xα, xβ .

22: Reset gauges Gvα, Gvβ ← I.
23: end for
24: end for
25: Output: ZWMBE-G =

∏
f ′∈F ′ f

3.3 Relation to Previous Work

Hölder’s inequality holds even for negative-valued func-
tions, so we do not need to put any additional constraint
on non-negativity of factors, e.g., f̂α(x̄α;Gα) ≥ 0.
Thus, invalid gauged transformed GMs are allowed for
(9). This contrasts with the earlier work of [26], where
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additional non-negativity constraints were needed to
restrict the gauge transformations considered. Conse-
quently, to our knowledge, our formulation is the first
to explore the full range of freedom in gauge transforma-
tions when combined with methods of variational infer-
ence for GMs. Further, avoiding these non-negativity
constraints simplifies our optimization procedure en-
abling an approach which scales much better than that
of [26].

We emphasize that our optimization formulation (9)
is a strict generalization of the approach of [16] which
optimizes the WMBE bound with respect to reparam-
eterization of GMs. Specifically, the GM reparame-
terized with respect to reparameterization parameters
θθθ = [θvα : (v, α) ∈ E] consists of factors:

f̂α(xα;θθθα) =
∏

v∈N(α)

exp(θvα(xi))fα(xα), (12)

where θθθα = {θvα : v ∈ N(α)}. Here, the reparame-
terization parameter θvα is constrained to satisfy the
following constraint:

exp(θvα(xv) + θvβ(xv)) = 1 ∀ v ∈ X,xv, (13)

where N(v) = {α, β}. With this constraint, it is easy
to check that such transformations are distribution-
invariant [18] and form a strict subset of gauge trans-
formations. Alternatively, when gauges are restricted
to diagonal matrices with non-negative elements, (2)
and (3) match (12) and (13), respectively. Therefore,
optimizing (9) is guaranteed to perform no worse than
that of [16]. Formally, we provide the following an-
alytic class of GMs where gauge transformations are
expected to perform strictly better than reparameteri-
zations. Here, we say a function of binary variables is
symmetric if its value is invariant under a ‘flipping’ of
all variables in its scope, e.g., fα(2, 1, 2) = fα(1, 2, 1).
Theorem 1. Consider a GM over binary variables
(i.e., d = 2) where every factor fα is symmetric. Then,
θθθ = {θvα(xv) = 0, ∀(v, α) ∈ E, xv} is always a solution
of the following optimization:

minimize
θθθ

w̄n̄
◦
◦

∑
x̄1̄

· · ·
w̄1

◦
◦

∑
x̄1

∏
α∈F

f̂α(x̄α;θθθα),

subject to exp(θvα(xv) + θvβ(xv)) = 1 ∀ v ∈ X,xv.

The proof of Theorem 1 is given in the Supplement. It
shows that for symmetric GMs, e.g., the Ising model
with no magnetic field, reparameterization is impos-
sible to improve the WMBE bound. On the other
hand, gauges are expected to improve it as we explain
in what follows. We first remark that the optimal-
ity condition for reparameterization is equivalent to
the zero gradient condition for diagonal elements of

gauges, i.e.,
∑

x̄α\v
q(x̄α) =

∑
x̄β\v

q(x̄β), which aims
to match the auxiliary marginals of variables split by
WMBE. Under symmetric models, variables are indis-
tinguishable from an auxiliary marginals point of view,
which leads to Theorem 1. On the other hand, the zero
gradient condition for non-diagonal gauges is harder
to match since it takes local conditional dependency
into account, e.g., considers fα(x̄α\v, x

′
v)/fα(x̄α\v, x

′′
v)

upon evaluating the gradient. For symmetric GMs,
the above reasoning for reparameterization fails since
variables are distinguishable after conditioning, e.g.,
fα(x̄α\v, x

′
v) 6= fα(x̄α\v, x

′′
v). Namely, optimal gauges

believably have non-diagonal elements. Indeed, in all
our experiments, gauge transformations significantly
outperform reparameterizations.

4 EXPERIMENTS

In this section, we report experimental results on per-
formance of our proposed algorithms for the task of
upper bounding the partition function Z.

4.1 Setup

Experiments were conducted with three family of GMs:
(i) Ising models on a 10× 10 grid graph (non-toroidal)
with 180 factors/100 variables; (ii) Forney-style GMs
on the 3-regular graph with 180 factors/270 variables;
and (iii) Linkage dataset from UAI 2014 Inference
Competition [34].

Figure 3: Illustration of Ising grid GM (left), its equiv-
alent Forney-style GM (middle) and 3-regular graph
(right) of interest. Factors surrounding selected lattices
(blue, dashed) are contracted into a single factor, and
then uniform single potentials (grey, filled) are added
for variables with degree 1.

(i) Ising models. Ising models were defined with
mixed interactions (spin glasses):

p(x) =
1

Z
exp

(∑
v∈X

φvxv +
∑

(u,v)∈E

φuvxuxv
)
,

where xu ∈ {−1, 1} and φv ∼ N (0, 0.1), φuv ∼ N (0, T ).
Here, T ≥ 0 is the ‘interaction strength’ parameter that
controls the degree of interactions between variables.
When T = 0, variables are independent. As T grows,
the inference task is typically harder.
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(a) Ising grid GMs, ibound = 4 (b) Ising grid GMs, ibound = 6

(c) 3-regular GMs, ibound = 4 (d) 3-regular GMs, ibound = 6 (e) Linkage dataset, ibound = 6.

Figure 2: Performance comparisons in various families of GMs

Note that this Ising model is not in Forney-style form,
with variables adjacent to at most 4 pairwise factors.
Hence, to apply our gauge optimization framework,
we generate an equivalent Forney-style GM using the
transformation introduced in [30]: this maps any classi-
cal lattice model (allowing for magnetic fields/singleton
potentials) into an equivalent Forney-style model. At a
high level, the transformation chooses disjoint lattices
to cover the whole graph, then contracts each lattice
into a single factor. Levin and Nave [30] showed that
one can always choose the lattice smartly so that each
vertex is covered exactly twice, resulting in a Forney-
style GM (see Figure 3 for details). Notably, this GM
has relatively low induced width of 14, thus the parti-
tion function can be computed exactly in reasonable
time (though still computationally hard) by using BE.

(ii) 3-regular Forney-stlye GMs. We considered 3-
regular Forney-style GMs with log-factors drawn from
normal distribution, i.e., log fα(xα) ∼ N (0, T ). Again,
T ≥ 0 is the interaction strength parameter. In this
case, we would like to choose graphs so that the in-
duced width is high and the partition function is hard
to compute. To this end, we aligned factors in a cycle,
and assigned variables (edges) between adjacent factors
in the cycle as well as those in the opposite side if it.
See Figure 3 for its illustration. This choice gives high
induced width, e.g., naïvely applying BE by eliminat-
ing variables between adjacent factors in clock-wise
elimination order results in bucket size 2|V |/2+2.

(iii) UAI Linkage dataset. Finally, we consider a
family of real-world models from the UAI 2014 Infer-
ence Competition, namely the Linkage (genetic link-
age) dataset. Specifically, the family consists of GMs
with average of 949.94 variables with averaged maxi-
mum cardinality maxi∈V |Xi| = 4.95 and 727.35 non-
singleton hyper-edges with averaged maximum size
maxα∈E |α| = 4.47. Since GMs in Linkage dataset were
not of Forney-style form, we constructed an equivalent
Forney-style GM as in Figure 1.

Comparing approaches. We compared our gauged
algorithmWMBE-G, i.e. optimizing the WMBE bound
jointly with gauges and Hölder weights, to earlier
methods considered in [16]: the unoptimized WMBE
bound (‘WMBE’), its optimized versions with respect
to Hölder weights w and/or reparameterizations θ
(‘WMBE-w’, ‘WMBE-θ’ and ‘WMBE-wθ’). Further,
we also ran the following popular baselines for comput-
ing upper bounds on Z: standard mini-bucket elimina-
tion (‘MBE’) and tree re-weighted belief propagation
(‘TRBP’) [12]. Finally, for fair comparisons in Ising grid
GMs, we additionally compared to MBE and TRBP
run on the original Ising grid GM (MBE-Ising and
TRBP-Ising) in order to validate whether the foremen-
tioned GM transformation to a Forney-style model is
‘favored’ towards gauge optimization.

Further details. Hölder weights w and reparameteri-
zations θ were updated using projected gradients and
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(a) Ising grid GMs, ibound = 4 (b) Ising grid GMs, ibound = 6 (c) 3-regular GMs, ibound = 4 (d) 3-regular GMs, ibound = 6

Figure 4: Effectiveness of optimizing various parameter choices (all methods return an upper bound on logZ).

log-gradients respectively, as proposed in [16]. Step
sizes for gradients were chosen as 0.01, 0.1, 0.1 for opti-
mizing each of gauge, Hölder weights, and reparameter-
izations, respectively. These were chosen empirically
for ‘easy’ convergence in our experiments – there ex-
ists room for tuning or for more sophisticated gradient
descent methods such as [35]. For Ising grid GMs, we
measure the log-error (with base e) approximating the
partition function Z, i.e., log (ZUB/Z) where ZUB is the
upper bound of a respective algorithm. For 3-regular
GMs, it is impossible to measure (since Z is impossible
to compute), and instead we use the relative magni-
tude of bounds with respect to the mini-bucket upper
bound ZMBE, i.e., log (ZUB/ZMBE). Since all tested
algorithms provide guaranteed upper bounds on Z, a
lower number indicates better performance. Further,
in the UAI dataset, 2 out of 17 instances were omitted
since it had factors with size larger than the algorithm’s
ibound of our choice. Finally, each point in the plots
represents results averaged over 10 independent runs.

4.2 Experimental Results

As shown in Figures 2(a)-(b), TRBP and MBE perform
better on the transformed Forney-style GMs than on
the original Ising models (this may be interesting to
explore in future work), but not by nearly enough to
achieve the performance of the other methods. For
fair comparison, we should examine the ‘TRBP’ and
‘MBE’ plots rather than the ‘-Ising’ versions. We ob-
serve that WMBE-wG, which enjoys the most freedom
in optimization of the WMBE bound, outperforms all
other tested algorithms. In particular, the benefit of
WMBE-wG appears to increase with higher interaction
strength. Comparing optimizations of just one class
of parameters, i.e., WMBE-G, WMBE-w, WMBE-θ,
we observe that WMBE-G performs at least as well
as others. In particular, optimizing gauges is always
better than optimizing over the subclass of reparam-
eterizations, i.e., WMBE-G and WMBE-wG always
outperform WMBE-θ and WMBE-wθ, respectively.
Further, WMBE-G outperforms other approaches sig-
nificantly for 3-regular GMs and UAI dataset, where
it outperforms even WMBE-wθ in 3-regular GMs with
ibound = 4 and some instances of the UAI dataset.

Next, we consider experiments on specific instances of
the Ising grid GM and 3-regular GM with T = 1.0 in
order to measure the effectiveness of optimizing each pa-
rameter G, w, θ separately over iterations; see Figure 4.
Specifically, we first optimize a chosen parameter with
respect to WMBE related bounds (via gradient descent
methods) for an initial 150 iterations. Then, we change
the parameter to optimize further (e.g., G → θ) for
another 300 iterations to observe the additional benefit
from optimizing the second parameter. The running
times per iteration for all parameters are comparable.
We observe that G methods perform very well, which
is particularly impressive since we use a small step size
for gauges. Overall, observed performance gains may
be ranked as: gauges > weights > reparameterization
for Ising grid GMs; and gauges > reparameterization
> weights for 3-regular GMs. Gauge optimization is
critical for the best performance in all experiments. As
expected, wG yields the best results. For 3-regular
GMs, gauge optimization alone is almost optimal.

5 Conclusion

We developed a new gauge-variational approach to
yield guaranteed bounds on the partition functions
of GMs by jointly optimizing variational parameters
and gauge transformations. Our approach has better
scaling characteristics then other recent state-of-the-art
methods, and should be of significant practical value.
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Supplement:
Gauged Mini-Bucket Elimination for Approximate Inference

A Example of gauge transformations

fa(x1, x2, x3) =

[[
2432 832
4672 640

] [
4864 384
5120 4160

]]
fa(x1, x2, x3; Ga) =

[[
2837 1559
3591 2077

] [
3631 2005
4261 2077

]]
fb(x1, x4, x5) =

[[
1088 128
4928 4608

] [
448 1664

3264 1344

]]
fb(x1, x4, x5; Gb) =

[[
2142 1434
4634 4558

] [
966 1490

1490 758

]]
fc(x2, x4, x6) =

[[
1216 5440
768 1856

] [
5568 896
640 512

]]
fc(x1, x4, x5; Gc) =

[[
3960 8808

-1608 -2520

] [
-328 -3288
6520 8296

]]
fd(x3, x5, x6) =

[[
5632 5632
6080 6208

] [
5568 896
640 512

]]
fd(x3, x5, x6; Gd) =

[[
2408 9160

10760 9192

] [
14536 -6232
-7448 -1208

]]
G1a, G2a, G3a, G4b, G5b, G6c =

[
0.75 0.25
0.25 0.75

]
G1b, G2c, G3d, G4c, G5d, G6d =

[
1.5 -0.5
-0.5 1.5

]

Figure 5: Example of gauge transformations on the complete graph (with respect to factors) of size 4. Arrays
follow row-column major indexing, e.g., fa(1, 1, 2) = 4864 and fa(1, 2, 1) = 832.

B Proof of Theorem 1

We prove reparameterization with respect to θθθ = {θvα(xv) = 0, ∀(v, α) ∈ E, xv} is optimal at GM with symmetric
factors in the following optimization:

minimize
θθθ

w̄n̄
◦
◦

∑
x̄1̄

· · ·
w̄1

◦
◦

∑
x̄1

∏
α∈F

fα(x̄α;θθθα),

subject to
∏

α∈N(v)

exp(θvα(xv)) = 1 ∀ v ∈ X,xv.

The optimization is convex, and assuming θvβ + θvα = 0 from the constraint, ∂ logZWMBE/∂θvα = 0 implies
optimality of the solution. To this end, the derivative is expressed as:

∂ logZWMBE

∂θ̄α(xvα)
=
∑
xα\v

q(x̄α)−
∑
x̄β\v

q(x̄β).

When factors are symmetric, it immediately follows that∑
xα\v

q(x̄α) =
∑
x̄β\v

q(x̄β) = 0.5,

since q is expressed via weighted absolute sum and normalization operation of factors, which both preserve
symmetry. Hence marginals are also symmetric, implying uniform distribution. Hence the optimality condition is
satisfied.
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