
Tightness of LP Relaxations for
Almost Balanced Models

Mark Rowland
Joint work with Adrian Weller (Cambridge) and David Sontag (NYU)

9 September 2016
CP 2016

Originally presented at the International Conference on Artificial Intelligence and Statistics (AISTATS) 2016

For more information, see http://mr504.user.srcf.net/

Tightness of LP Relaxations for Almost Balanced Models Mark Rowland 1/11



Motivation: Undirected graphical models

Describe joint distribution of discrete random variables X1, . . . ,Xn

according to graph G = (V ,E )
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P(X1 = x1, . . . ,Xn = xn) ∝ exp

 ∑
Cliques C in G

ψC (xC )


Powerful way to represent relationships across variables

Applications include computer vision, social network analysis,
deep belief networks, protein folding...

In this talk, focus on binary pairwise models
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Motivation: Undirected graphical models

A fundamental problem is maximum a posteriori (MAP) inference

Find a global configuration with highest probability

(x1, . . . , xn)∗ ∈ argmaxP(X1 = x1, . . . ,Xn = xn)

Example: image denoising image from NASA

−→ MAP inference

Exponential search space, NP-hard in general

One contribution: prove that this problem is tractable
for a new class of models
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Motivation: Undirected graphical models

For a binary pairwise graphical model corresponding to G = (V ,E ):

P(X1 = x1, . . . ,Xn = xn) ∝ exp

∑
i∈V

θi1xi=1 +
∑
ij∈E

Wij1xi=1,xj=1


Combinatorial problem

maxx∈{0,1}V

[∑
i∈V θi1xi=1 +

∑
ij∈E Wij1xi=1,xj=1

]

Equivalent linear program

maxq∈M

[∑
i∈V θiqi +

∑
ij∈E Wijqij

]
Marginal polytope M: enforce global consistency on (pseudo)marginals (qi )i∈V and (qij )ij∈E

Relaxed linear program

maxq∈Lk

[∑
i∈V θiqi +

∑
ij∈E Wijqij

]
Sherali-Adams polytope Lk : enforce consistency over each cluster of k variables on

(pseudo)marginals (qi )i∈V and (qij )ij∈E
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Motivation: Undirected graphical models

P(X1 = x1, . . . ,Xn = xn) ∝ exp

∑
i∈V

θi1xi =1 +
∑
ij∈E

Wij1xi =1,xj =1



Combinatorial problem Linear program over M Relaxed linear program over Lk

Computationally hard Computationally hard Computationally cheaper

Exact Exact Only sometimes exact

Marginal polytope M: singleton and edge marginals q = ((qi )i∈V , (qij )ij∈E ) which are globally consistent.

Sherali-Adams polytope Lk : singleton and edge pseudo-marginals that are locally consistent for each
subset of k random variables. Common choices:

L2 - enforces consistency for all pairs of random variables
L3 - enforces consistency for triplets of random variables
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When is MAP inference (relatively) easy?

Tree Attractive model

STRUCTURE POTENTIALS

Both can be solved exactly and efficiently over L2: integer
solution (tight)

For models which are not attractive but are ‘close to
attractive’, L2 is often not tight - but using an LP relaxation
with higher order clusters (e.g. L3), empirically the result is
tight (Sontag et al., 2008)

Tightness of LP Relaxations for Almost Balanced Models Mark Rowland 6/11



When is MAP inference (relatively) easy?

Tree Attractive model

STRUCTURE POTENTIALS

Both can be solved exactly and efficiently over L2: integer
solution (tight)

For models which are not attractive but are ‘close to
attractive’, L2 is often not tight - but using an LP relaxation
with higher order clusters (e.g. L3), empirically the result is
tight (Sontag et al., 2008)

Tightness of LP Relaxations for Almost Balanced Models Mark Rowland 6/11



Almost attractive and almost balanced models

Blue edges are attractive, dashed red edges are repulsive
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(attractive up to flipping)
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Main Results

L3 is tight for any almost balanced model

We show a general result that submodels can be pasted
together in certain ways while preserving LP tightness

For L3:
Can paste submodels on any one variable
Can paste on an edge provided it uses special variable s
from each submodel

s1

s2
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Proof idea

Given an almost balanced model:

if any non-integral optimum vertex q̂ is proposed, we demonstrate
an explicit small perturbation p s.t. q̂ + p and q̂ − p remain in L3,
while q̂ = 1

2 (q̂ − p) + 1
2 (q̂ + p) and hence q̂ cannot be a vertex

fractional vertex

of L3

Marginal polytope, M

θ

integral vertex
perturbation

q̂
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Conclusion

Previously known: L2 is tight for attractive and balanced
models

Empirically LP relaxations using higher order cluster
constraints are tight for models which are close to attractive

We prove that L3 is tight for almost attractive and almost
balanced models

We also provide a composition result

This gives a hybrid condition on structure and potentials

Thank you!

http://mr504.user.srcf.net/
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Supplementary material

Extra slides for questions or further
explanation
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Key steps in the proof

We may assume an almost attractive model:
all edges are attractive except for some
incident to variable s

s

If s is held to a fixed marginal qs = y ∈ (0, 1),
while all other marginals are optimized, some
edge marginals ‘behave as attractive edges’

We prove a structural result: any edge which
is not ‘behaving attractive’ must be in a
binding triplet constraint together with the
special variable s

s
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Key steps in the proof

Using the structural result for fixed qs = y , we
construct an explicit perturbation up and down
by p while remaining within TRI, unless all
marginals take values in {0, y , 1− y , 1}.
Hence at an optimum, all marginals must have
this form.

b

a

c

d

s

qs = y

qa ↑

qb ↓ qc ↑

qd ↓

We use this to show a stronger result:
let F s(y) = maxq∈L3:qs=y θ · q be the
constrained optimum score in TRI holding
fixed qs = y , then F s(y) is linear.
Hence, the maximum is achieved at one end:
qs = 0 or qs = 1. qs

F s (qs )

Remaining model is attractive, hence global
integer solution.

s

qs ∈ {0, 1}
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