Tightness of LP Relaxations for Almost Balanced Models

Mark Rowland

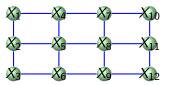
Joint work with Adrian Weller (Cambridge) and David Sontag (NYU)

9 September 2016 CP 2016

Originally presented at the International Conference on Artificial Intelligence and Statistics (AISTATS) 2016

For more information, see http://mr504.user.srcf.net/

Describe joint distribution of discrete random variables X_1, \ldots, X_n according to graph G = (V, E)



$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) \propto \exp\left(\sum_{\text{Cliques } C \text{ in } G} \psi_C(x_C)\right)$$

- Powerful way to represent relationships across variables
- Applications include computer vision, social network analysis, deep belief networks, protein folding...
- In this talk, focus on binary pairwise models

- A fundamental problem is maximum a posteriori (MAP) inference
 - Find a global configuration with highest probability

$$(x_1,\ldots,x_n)^* \in \arg \max \mathbb{P}(X_1 = x_1,\ldots,X_n = x_n)$$

• Example: image denoising

image from NASA

 \longrightarrow MAP inference

- Exponential search space, NP-hard in general
- One contribution: prove that this problem is tractable for a new class of models

For a binary pairwise graphical model corresponding to G = (V, E): $\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) \propto \exp\left(\sum_{i \in V} \theta_i \mathbb{1}_{x_i=1} + \sum_{ij \in E} W_{ij} \mathbb{1}_{x_i=1, x_j=1}\right)$

Combinatorial problem

$$\max_{x \in \{0,1\}^{V}} \left[\sum_{i \in V} \theta_{i} \mathbb{1}_{x_{i}=1} + \sum_{ij \in E} W_{ij} \mathbb{1}_{x_{i}=1, x_{j}=1} \right]$$

Combinatorial problem

$$\max_{x \in \{0,1\}^V} \left[\sum_{i \in V} \theta_i \mathbb{1}_{x_i=1} + \sum_{ij \in E} W_{ij} \mathbb{1}_{x_i=1, x_j=1} \right]$$

Combinatorial problem

$$\max_{x \in \{0,1\}^{V}} \left[\sum_{i \in V} \theta_{i} \mathbb{1}_{x_{i}=1} + \sum_{ij \in E} W_{ij} \mathbb{1}_{x_{i}=1, x_{j}=1} \right]$$

Equivalent linear program

$$\max_{q \in \mathbb{M}} \left[\sum_{i \in V} \theta_i q_i + \sum_{ij \in E} W_{ij} q_{ij} \right]$$

Marginal polytope M: enforce global consistency on (pseudo)marginals $(q_i)_{i \in V}$ and $(q_{ii})_{ii \in E}$

Combinatorial problem

$$\max_{x \in \{0,1\}^{V}} \left[\sum_{i \in V} \theta_i \mathbb{1}_{x_i=1} + \sum_{ij \in E} W_{ij} \mathbb{1}_{x_i=1, x_j=1} \right]$$

Equivalent linear program

$$\max_{q \in \mathbb{M}} \left[\sum_{i \in V} \theta_i q_i + \sum_{ij \in E} W_{ij} q_{ij} \right]$$

Marginal polytope M: enforce global consistency on (pseudo)marginals $(q_i)_{i \in V}$ and $(q_{ij})_{i \in V}$

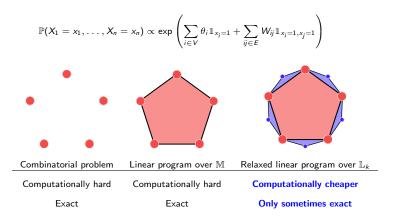
Relaxed linear program

Shera

$$\max_{q \in \mathbb{L}_{k}} \left[\sum_{i \in V} \theta_{i} q_{i} + \sum_{ij \in E} W_{ij} q_{ij} \right]$$

Ii-Adams polytope \mathbb{L}_{k} : enforce consistency over each cluster of k variables on

(pseudo)marginals $(q_i)_{i \in V}$ and $(q_{ij})_{ij \in E}$



• Marginal polytope M: singleton and edge marginals $q = ((q_i)_{i \in V}, (q_{ij})_{ij \in E})$ which are globally consistent.

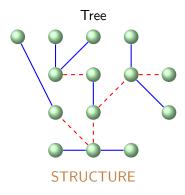
Sherali-Adams polytope L_k: singleton and edge pseudo-marginals that are *locally consistent* for each subset of k random variables. Common choices:

- L₂ enforces consistency for all pairs of random variables
- L₃ enforces consistency for *triplets* of random variables

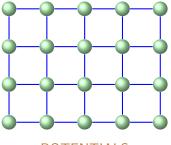
Tightness of LP Relaxations for Almost Balanced Models

Mark Rowland

When is MAP inference (relatively) easy?

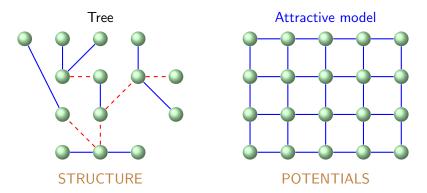


Attractive model



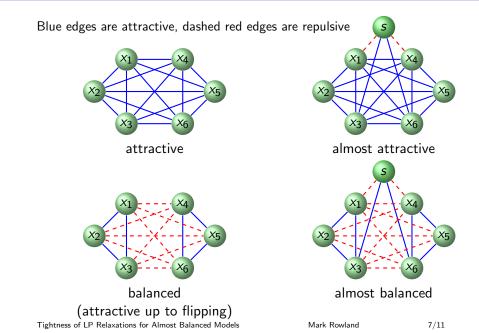
POTENTIALS

When is MAP inference (relatively) easy?



- Both can be solved exactly and efficiently over L₂: integer solution (tight)
- For models which are not attractive but are 'close to attractive', \mathbb{L}_2 is often not tight but using an LP relaxation with higher order clusters (e.g. \mathbb{L}_3), empirically the result is tight (Sontag et al., 2008)

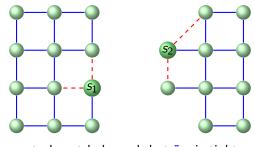
Almost attractive and almost balanced models



• \mathbb{L}_3 is tight for any almost balanced model

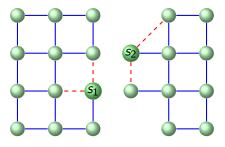
- \mathbb{L}_3 is tight for any almost balanced model
- We show a general result that submodels can be pasted together in certain ways while preserving LP tightness

- \mathbb{L}_3 is tight for any almost balanced model
- We show a general result that submodels can be pasted together in certain ways while preserving LP tightness
- For \mathbb{L}_3 :
 - Can paste submodels on any one variable
 - Can paste on an edge provided it uses special variable s from each submodel



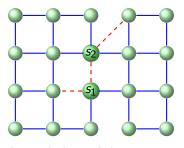
not almost balanced, but \mathbb{L}_3 is tight Tightness of LP Relaxations for Almost Balanced Models

- \mathbb{L}_3 is tight for any almost balanced model
- We show a general result that submodels can be pasted together in certain ways while preserving LP tightness
- For \mathbb{L}_3 :
 - Can paste submodels on any one variable
 - Can paste on an edge provided it uses special variable s from each submodel



Mark Rowland

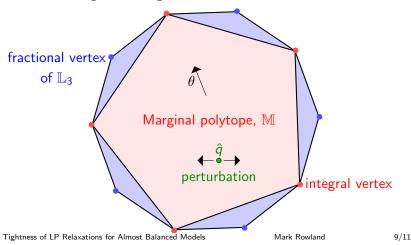
- \mathbb{L}_3 is tight for any almost balanced model
- We show a general result that submodels can be pasted together in certain ways while preserving LP tightness
- For \mathbb{L}_3 :
 - Can paste submodels on any one variable
 - Can paste on an edge provided it uses special variable *s* from each submodel



Proof idea

Given an almost balanced model:

• if any non-integral optimum vertex \hat{q} is proposed, we demonstrate an explicit small perturbation p s.t. $\hat{q} + p$ and $\hat{q} - p$ remain in \mathbb{L}_3 , while $\hat{q} = \frac{1}{2}(\hat{q} - p) + \frac{1}{2}(\hat{q} + p)$ and hence \hat{q} cannot be a vertex



Conclusion

- \bullet Previously known: \mathbb{L}_2 is tight for attractive and balanced models
- Empirically LP relaxations using higher order cluster constraints are tight for models which are close to attractive
- \bullet We prove that \mathbb{L}_3 is tight for almost attractive and almost balanced models
- We also provide a composition result
- This gives a hybrid condition on structure and potentials

Thank you!

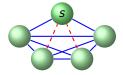
http://mr504.user.srcf.net/

- D. Sontag, T. Meltzer, A. Globerson, T. Jaakola and Y. Weiss. Tightening LP relaxations for MAP using message passing. In *UAI*, 2008.
- A. Weller. Revisiting the limits of MAP inference by MWSS on perfect graphs. In *AISTATS*, 2015.
- A. Weller, M. Rowland, D. Sontag. Tightness of LP Relaxations for Almost Balanced Models. In AISTATS, 2016.
- A. Weller. Characterizing Tightness of LP Relaxations by Forbidding Signed Minors. In *UAI*, 2016.

Supplementary material

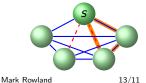
Extra slides for questions or further explanation

We may assume an almost attractive model: all edges are attractive except for some incident to variable *s*



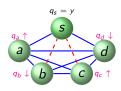
If s is held to a fixed marginal $q_s = y \in (0, 1)$, while all other marginals are optimized, some edge marginals 'behave as attractive edges'

We prove a structural result: any edge which is not 'behaving attractive' must be in a binding triplet constraint together with the special variable s



Key steps in the proof

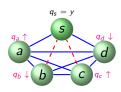
Using the structural result for fixed $q_s = y$, we construct an explicit perturbation up and down by p while remaining within TRI, unless all marginals take values in $\{0, y, 1 - y, 1\}$. Hence at an optimum, all marginals must have this form.

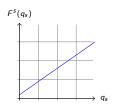


Key steps in the proof

Using the structural result for fixed $q_s = y$, we construct an explicit perturbation up and down by p while remaining within TRI, unless all marginals take values in $\{0, y, 1 - y, 1\}$. Hence at an optimum, all marginals must have this form.

We use this to show a stronger result: let $F^{s}(y) = \max_{q \in \mathbb{L}_{3}: q_{s} = y} \theta \cdot q$ be the constrained optimum score in TRI holding fixed $q_{s} = y$, then $F^{s}(y)$ is linear. Hence, the maximum is achieved at one end: $q_{s} = 0$ or $q_{s} = 1$.





Key steps in the proof

Using the structural result for fixed $q_s = y$, we construct an explicit perturbation up and down by p while remaining within TRI, unless all marginals take values in $\{0, y, 1 - y, 1\}$. Hence at an optimum, all marginals must have this form.

We use this to show a stronger result: let $F^{s}(y) = \max_{q \in \mathbb{L}_{3}: q_{s} = y} \theta \cdot q$ be the constrained optimum score in TRI holding fixed $q_{s} = y$, then $F^{s}(y)$ is linear. Hence, the maximum is achieved at one end: $q_{s} = 0$ or $q_{s} = 1$.

Remaining model is attractive, hence global integer solution.

