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High level overview of our 3 lectures

@ 1. Directed and undirected graphical models (last Wed)

@ 2. LP relaxations for MAP inference (today)

@ 3. Junction tree algorithm for exact inference, belief propagation,
variational methods for approximate inference (Wed next week)

Further reading / viewing:

o Murphy, Machine Learning: a Probabilistic Perspective

o Barber, Bayesian Reasoning and Machine Learning

@ Bishop, Pattern Recognition and Machine Learning

@ Koller and Friedman, Probabilistic Graphical Models
https://www.coursera.org/course/pgm

o Wainwright and Jordan, Graphical Models, Exponential Families,
and Variational Inference


https://www.coursera.org/course/pgm

Example of MAP inference: image denoising

Inference is combining prior beliefs with observed evidence to form a
prediction.
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Example of MAP inference: protein side-chain placement

@ Find “minimum energy” configuration of amino acid side-chains
along a fixed carbon backbone:

(Yanover, Meltzer, Weiss ‘06) “Potential” function
fide—chain ; X, X,  for each edge
corresponding to _, « 0,.(x,, X
| amino acid) \A |3( v 3) elz(xl' XZ) atable

B —
Protein backbone - e B34(%3 %)
Lo X,

@ Orientations of the side-chains are represented by discretized
angles called rotamers

@ Rotamer choices for nearby amino acids are energetically coupled
(attractive and repulsive forces)



Outline of talk

@ Background on undirected graphical models
@ Basic LP relaxation
@ Tighter relaxations

@ Message passing and dual decomposition

We'll comment on

@ When is an LP relaxation tight



Background: undirected graphical models

@ Powerful way to represent relationships across variables

@ Many applications including: computer vision, social network
analysis, deep belief networks, protein folding...

@ In this talk, focus on pairwise models with discrete variables
(sometimes binary)

088
11117

Example: Grid for computer vision



Background: undirected graphical models

e Discrete variables Xi,..., X, with X; € {0,... , k — 1}
@ Potential functions, will somehow write as vector ¢

o Write x =(...x1,...,Xp,...) for one ‘overcomplete configuration’
of all variables, 0 - x for its total score

@ Probability distribution given by

plx) = S (0 x)

@ To ensure probabilities sum to 1, need normalizing constant or
partition function Z = exp (¢ - x)

@ We are interested in maximum a posteriori (MAP) inference
i.e., find a global configuration with highest probability

x* € argmax p(x) = argmax 6 - x



Background: how do we write potentials as a vector 67

@ - x means the total score of a configuration x, where we sum
over all potential functions

o If we have potential functions 6. over some subsets ¢ € C of
variables, then we want ) __0c(xc), where x. means a
configuration of variables just in the subset ¢

@ O.(xc) provides a measure of local compatibility, a table of values



Background: how do we write potentials as a vector 67

@ - x means the total score of a configuration x, where we sum
over all potential functions

o If we have potential functions 6. over some subsets ¢ € C of
variables, then we want ) __0c(xc), where x. means a
configuration of variables just in the subset ¢

@ O.(xc) provides a measure of local compatibility, a table of values

@ If we only have some unary/singleton potentials ; and
edge/pairwise potentials 6;; then we can write the total score as

20 X; —i—ZHU (xi,x})

(i)
@ Indices? Usually assume either no unary potentials (absorb them
into edges) or one for every variable, leading to a graph topology
(V, E) with total score

Z 0i(xi) + Z 0i(xi, x;)

ievV={1,...,n} (iJ)eE



Background: overcomplete representation

The overcomplete representation conveniently allows us to write

0 - X—ZQ (x;) + Z 0i(xi, x;)

eV (ij)eE

@ Concatenate singleton and edge terms into big vectors

6:(0) 1[Xi = 0]
0i(1) 1[X = 1]
0 e v e
0;;(0,0) 1[Xi =0, X; = 0]
0;(0,1) 1[X = 0,X; = 1]
0i(1,0) 1[Xi=1,X; =0]
0;(1,1) 1[Xi=1,X =1]

@ There are many possible values of x how many?
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Background: Binary pairwise models

0 - x is the score of a configuration x

Probability distribution given by

p(x) = 3 expl(0-x)

For MAP inference, want x* € arg max p(x) = argmax - x

Want to optimize over {0,1} coordinates of ‘overcomplete
configuration space’ corresponding to all 2" possible settings

The convex hull of these defines the marginal polytope M

Each point ;o € M corresponds to a probability distribution over
the 2" configurations, giving a vector of marginals



Background: the marginal polytope (all valid marginals)

1 <— Assignment for X,

. |
? Marginal polytope 0
(l) (Wainwright & Jordan, '03) (I) <— Assignment for X,
- | / | | «— Assignment for X,
"=1o 0
0 (I) <— Edge assignment for
0 -
| i=|o X%
0 0
0 1 0 | <— Edge assignment for
o T
0 D) tu 0 172
I valid marginal probabilities 0
0 0 | <— Edge assignment for
0 X, =1 (I) X, X5
|
[ 0] i 0] X,=0
=l %0 A



Background: overcomplete and minimal representations

@ The overcomplete representation is highly redundant,
e.g. pi(0)+pi(1) =1Vi
@ How many dimensions if n binary variables with m edges?
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@ What's the minimum number of dimensions we need?



Background: overcomplete and minimal representations

@ The overcomplete representation is highly redundant,
e.g. pi(0)+pi(1) =1Vi
@ How many dimensions if n binary variables with m edges? 2n+4m

@ Instead, we sometimes pick a minimal representation
@ What's the minimum number of dimensions we need? n+ m

@ For example, we could use ¢ = (q1,...,Gn, ..., qjj,...) Where
i = (1) Vi. 4 = (L, 1) ¥(7.J), then

(1=q\ l—qj> ___<1+q,-j—q,-—qj qj—q;j)
“’(q;)’“’(qj o M qi — qjj qij

@ Note many other possible minimal representations



LP relaxation: MAP as an integer linear program (ILP)

@ MAP inference as a discrete optimization problem is to identify a
configuration with maximum total score

x* e argmaxZQ (xi) + ZGU(X,,XJ

iev ijeE

= arg max 6 - x

—argmaxZZH (xi )i (xi —1—229” Xi, Xj ) pij (Xi, ;)

eV X IJEEXHXJ

=argmaxf -y s.t. u is integral
n

@ Any other constraints?



What are the constraints?

@ Force every “cluster” of variables to choose a local assignment:

wi(x;) € {0,1} Vie V,x
Z,u,-(x,-) =1 VieVv

wilxixg) € {01} Vij € Eyxi,x
>_milxix) = 1 VijeE

X Xj

@ Enforce that these assignments are consistent:

pi(xi) = ZMU(X,',XJ) Vij € E, x;
Xj

wilg) = > pwilxi.x) Vij € E,x;
Xj



MAP as an integer linear program (ILP)

MAP(#) = max DO 00 mi0a) + Y Y 050, x:) i (i, X;)

iev xi jEE Xi,X;j
= maxf - u
o
subject to:
pi(xi) € {0,1} VieV,x; (edgeterms?)

> uilx) = 1 VieVv

pil) = > milxix) Vi€ E,x
Xj
wig) = Zﬂij(xiaxj) Vij € E, xj

@ Many good off-the-shelf solvers, such as CPLEX and Gurobi



Linear programming (LP) relaxation for MAP

Integer linear program was:

MAP(6) = max6 - u
n

subject to
pi(xi) € {0,1} VieV,x
> pilx) = 1 VieVv

Zuij(x;,xj-) Vij € E, x;
nilx) = Zuu xi, ) Vij € E,x;

Now relax integrality constraints, allow variables to be between 0 and 1:

pi(x) € [0,1] VieV,x



Basic LP relaxation for MAP

LP(0) = maxf-pu
m
st. pi(x) € [0,1] VieV,x
> wilx) = 1 VieV

pil) = > milxix) Vi€ E,x
Xj
pig) = Zuij(xl',xj) Vij € E, xj

@ Linear programs can be solved efficiently: simplex, interior point,
ellipsoid algorithm

@ Since the LP relaxation maximizes over a larger set, its value can only be
higher

MAP(6) < LP(6)



The local polytope

LP(#) = max0-p
A
st pi(x) € [0,1] VieV,x
STuitg) = 1 Viev
i
wil) = > wylxix) Vi€ E, x
=
j
miGg) = > milxi,x) Vi€ E,x;

Xi

@ All these constraints are linear
@ Hence define a polytope in the space of marginals

@ Here we enforced only local (pairwise) consistency, which defines the
local polytope

@ If instead we had optimized over the marginal polytope, which enforces
global consistency, then we would have MAP(0) =LP(9),
i.e. the LP is tight why? why don’t we do this?



Tighter relaxations of the marginal polytope

@ Enforcing consistency of pairs of variables leads to the local
polytope L,

@ The marginal polytope enforces consistency over all variables
M=1L,

@ Natural to consider the Sherali-Adams hierarchy of successively
tighter relaxations I, 2 < r < n which enforce consistency over
clusters of r variables

@ Just up from the local polytope is the triplet polytope TRI= 1.3



Stylized illustration of polytopes

marginal polytope M = L, triplet polytope L3 local polytope L,
global consistency triplet consistency pair consistency

More accurate <> Less accurate

More computationally intensive <+ Less computationally intensive



Stylized illustration of polytopes

marginal polytope M = L, triplet polytope L3 local polytope L,
global consistency triplet consistency pair consistency

More accurate <> Less accurate

More computationally intensive <+ Less computationally intensive

@ Can be shown that for binary variables, TRI=CYC, the cycle
polytope, which enforces consistency over all cycles
In general, TRI C CYC, open problem if TRI = CYC [SonPhD §3]



When is the LP tight?

@ For a model without cycles, local polytope Lo,=M marginal
polytope, hence the basic LP (‘first order’) is always tight

@ More generally, if a model has treewidth r then LP+L, 1 is tight
[WaiJor04] STRUCTURE

@ Separately, if we allow any structure but restrict the class of
potential functions, interesting results are known  POTENTIALS

@ For example, the basic LP is tight if all potentials are supermodular

e Fascinating recent work [KolThaZiv15]: if we do not restrict
structure, then for any given family of potentials, either the basic
LP relaxation is tight or the problem class is NP-hard!

@ Identifying HYBRID conditions is an exciting current research area



When is MAP inference (relatively) easy?

Tree Attractive (binary) model
—0—0—0—0
STRUCTURE POTENTIALS

@ Both can be handled efficiently by the basic LP relaxation, LP+1L,

@ For models which are not attractive but are ‘close to attractive’,
LP+4LOC is often not tight - but using an LP relaxation with
higher order clusters, empirically the result is tight (Sontag et al.,
2008)



Example: Image foregound-background segmentation

(Domke, 2013)

@ Learning potentials from data, most edges are attractive but a few
are repulsive: the model is ‘close to attractive’

@ LP+LOC enforces pairwise consistency, often not tight
@ The LP relaxation over the triplet polytope TRI usually is tight
Why?
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@ Learning potentials from data, most edges are attractive but a few
are repulsive: the model is ‘close to attractive’

@ LP+LOC enforces pairwise consistency, often not tight
@ The LP relaxation over the triplet polytope TRI usually is tight
LP+TRI is tight for any almost attractive model



Example: Image foregound-background segmentation

(Domke, 2013)

@ Learning potentials from data, most edges are attractive but a few
are repulsive: the model is ‘close to attractive’

@ LP+LOC enforces pairwise consistency, often not tight
@ The LP relaxation over the triplet polytope TRI usually is tight
LP+TRI is tight for any almost balanced model



Almost attractive and almost balanced models

Blue edges are attractive, dashed red edges are repulsive

balanced almost balanced
(attractive up to flipping)



Results for LP4+TRI (W., Rowland and Sontag 2016)

@ LP+TRI is tight for any almost balanced model

@ Submodels can be pasted together in certain ways while preserving
LP tightness

o Can paste submodels on any one variable
o Can paste on an edge provided it uses special variable s from each
submodel

—9—9 9—9

\ Q_%

adiise



Results for LP4+TRI (W., Rowland and Sontag 2016)

@ LP+TRI is tight for any almost balanced model

@ Submodels can be pasted together in certain ways while preserving
LP tightness

o Can paste submodels on any one variable
o Can paste on an edge provided it uses special variable s from each
submodel
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Results for LP4+TRI (W., Rowland and Sontag 2016)

@ LP+TRI is tight for any almost balanced model

@ Submodels can be pasted together in certain ways while preserving
LP tightness
o Can paste submodels on any one variable
o Can paste on an edge provided it uses special variable s from each
submodel
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Results for LP4+TRI (W., Rowland and Sontag 2016)

o LP+TRI is tight for any almost balanced model
@ Submodels can be pasted together in certain ways while preserving
LP tightness
o Can paste submodels on any one variable

o Can paste on an edge provided it uses special variable s from each
submodel

@ Stronger results using graph minors (W. UAI 2016)



Cutting planes

max6 - pu max 6 - u max @ - it max 6 -

[ M. N‘
: C n
w w
(b) (c

(a) )

" e

(d)

Figure 2-6: Illustration of the cutting-plane algorithm. (a) Solve the LP relaxation. (b)
Find a violated constraint, add it to the relaxation, and repeat. (c) Result of solving the
tighter LP relaxation. (d) Finally, we find the MAP assignment.

SonPhD



Cutting planes

max 0 - i

Useless
constraint

Invalid
constraint

SonPhD

We want to add constraints that are both valid and useful
@ Valid: does not cut off any integer points

@ Useful: leads us to update to a better solution



Methods for solving general integer linear programs

@ Local search

o Start from an arbitrary assignment (e.g., random).
o Choose a variable.

@ Branch-and-bound

o Exhaustive search over space of assignments, pruning branches that
can be provably shown not to contain a MAP assignment

o Can use the LP relaxation or its dual to obtain upper bounds

o Lower bound obtained from value of any assignment found

@ Branch-and-cut (most powerful method; used by CPLEX & Gurobi)

e Same as branch-and-bound; spend more time getting tighter bounds
o Adds cutting-planes to cut off fractional solutions of the LP
relaxation, making the upper bound tighter



Message passing

o Can be a computationally efficient way to obtain or approximate a
MAP solution, takes advantage of the graph structure
@ Classic example is ‘max-product’ belief propagation (BP)

e Sufficient conditions are known s.t. this will always converge to
the solution of the basic LP, includes that the basic LP is tight
[ParkShin-UAI15]

@ In general, however, this may not converge to the LP solution
(even for supermodular potentials)

@ Other methods have been developed, many relate to dual
decomposition...



Dual decomposition and reparameterizations

@ Consider the MAP problem for pairwise Markov random fields:

MAP(f) = mxaxz 0i(xi) + > _ 0;(xi, ).

iev iicE

@ If we push the maximizations inside the sums, the value can only
increase:

MAP(9) < Z max 0;(x;) + Z max 0;(x;, x;)
iev jee Y

@ Note that the right-hand side can be easily evaluated

@ One can always reparameterize a distribution by operations like

0 () = 0790x) + f(x)

05 (xi, ) = 059(xi, ) — F(xi)

for any function f(x;), without changing the distribution/energy



Dual decomposition

Of(zhfZ) —0f1(x1)— 0}2(1:2)‘ ‘

Hf(Tl-,l'z)

®
S
+

Oy (w1, w3) dg1(71)
- 5;,3(373)

5, — Og1(21) @ ; ()ys(n)

Oq(w1,w3) On(,24)

::g

k(23,74




Dual decomposition

@ Define:

Gi(x) = 0i(x)+ Z dji(xi)

0i(xi,xi) = 05(xi, x5) = 0j~i(xi) = dimj(x)
@ It is easy to verify that

ZO X; +Z€U(X,,Xj ZO X; —|—ZOU (xi,x;) Vx

ii€E jecE
@ Thus, we have that:
MAP(#) = MAP({ meaxﬁ xi) + Z rpa}r{x 0;i(xi, x;)
iev jjeE
@ Every value of § gives a different upper bound on the value of the MAP

@ The tightest upper bound can be obtained by minimizing the RHS with
respect to §



Dual decomposition

@ We obtain the following dual objective: L(§) =

> max (6,(x) + D 8ji() ) + Zr;;,axjx( 06,%5) = G1i(x) = 81-4i() )

icev iicE ije
DUAL-LP(6) = min L()

@ This provides an upper bound on the MAP assignment
MAP(9) < DUAL-LP(0) < L(9)

@ How can find § which give tight bounds?



Solving the dual efficiently

@ Many ways to solve the dual linear program, i.e. minimize with respect

to §:
> max (6,0x) + D 8ji() ) + Z max (6806, 9) = 1) = 8i-())
icev ij€E ’

@ One option is to use the subgradient method

@ Can also solve using block coordinate-descent, which gives algorithms
that look very much like max-sum belief propagation
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Max-product linear programming (MPLP) algorithm

Input: A set of potentials 0;(x;), 8;;(x;, x;)
Output: An assignment xi, ..., x, that approximates a MAP solution
Algorithm:

@ Initialize §ij(x;)) =0, 6&;-i(x;) =0, Vij€ E, x;,x;

@ Iterate until small enough change in L(4):

For each edge ij € E (sequentially), perform the updates:

1 1 .

dimi(xi) = —E(SIJ(X,-)—F§mx?x[9,-j(x,-,xj)+5j (xj)] Vx;
1, 1 i

Big5) = =507 0g) + 5 max [05(0x,) +8,70a) | g

where 6,7 (x;) = 6;(x;) + > ikek kotj Ok—i(Xi)

@ Return x; € arg maxg, 6(%;)



Generalization to arbitrary factor graphs [SonGloJaall]

Inputs:

" A set of factors 0;(z;), 0 ().

Output:

® An assignment x1,...,z, that approximates the MAP.
Algorithm:

® Initialize §;(2:) =0, Vf € F,i€ f, a;.
® Tterate until small enough change in L(§) (see Eq. 1.2):
For each f € F, perform the updates

Ofi(xi) = —diff( i)+ ‘f‘ max |:0f ) +Z(5
ief

simultaneously for all i € f and ;. We define 6, / (2;) =
® Return z; € arg maxz, 07 (&;) (see Eq. 1.6).

} , (1.16)

91(1&) + Zf#f (5f*l($z).




Experimental results

Performance on stereo vision inference task:
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Dual decomposition = basic LP relaxation

@ Recall we obtained the following dual linear program: L(8) =

> max (9,-(x,~) +) 5,4,-(x,-)) + Z max (GU(Xia Xj) — 0j—i(x;) — 5:41()9')),

icv iicE el
DUAL-LP(6) = min L(6)

@ We showed two ways of upper bounding the value of the MAP
assignment:

MAP(9)
MAP(6)

Basic LP(9) (1)

<
< DUAL-LP(d) < L(5) (2)

@ Although we derived these linear programs in seemingly very different
ways, in turns out that:

Basic LP(0) = DUAL-LP(6)  [SonGloJaall]

@ The dual LP allows us to upper bound the value of the MAP assignment
without solving an LP to optimality



Linear programming duality

(Dual) LP relaxation

(Primal) LP relaxation
MAP assignment

Integer linear program

MAP(6) < Basic LP(6) = DUAL-LP(6) < L(5)



Conclusion

LP relaxations yield a powerful approach for MAP inference

Naturally lead to

e considerations of polytope or cutting planes
o dual decomposition and message passing

Close relationship to methods for marginal inference

Help build understanding as well as develop new algorithmic tools

Exciting current research

Thank you
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